
Institute of Computing/Instituto de Computação

University of Campinas/Universidade Estadual de Campinas

Shadows: a new means of representing documents

Matheus Silva Mota

This text corresponds to the final version of

the Dissertation duly corrected and defended

by Matheus Silva Mota and approved by the

Board of Examiners.

Este exemplar corresponde à redação final da

Dissertação devidamente corrigida e defendida

por Matheus Silva Mota e aprovada pela Banca

Examinadora.

Campinas, June 24, 2012.

Dissertation presented to the Institute of Com-

puting of unicamp in partial fulfillment of the

requirements to be awarded the MSc of Com-

puter Science.

Dissertação apresentada ao Instituto de Com-

putação, unicamp, como requisito parcial para

a obtenção do t́ıtulo de Mestre em Ciência da

Computação.

i

FICHA CATALOGRÁFICA ELABORADA POR
ANA REGINA MACHADO - CRB8/5467

BIBLIOTECA DO INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E
COMPUTAÇÃO CIENTÍFICA - UNICAMP

 Mota, Matheus Silva, 1986-
 M856s MotShadows : a new means of representing documents / Matheus

Silva Mota. – Campinas, SP : [s.n.], 2012.

 MotOrientador: Claudia Maria Bauzer Medeiros.
 MotDissertação (mestrado) – Universidade Estadual de Campinas,

Instituto de Computação.

 Mot1.. Banco de dados - Gerência. .2.. Sistemas de recuperação da

informação - Documentos. . I.. Medeiros, Claudia Maria Bauzer,
1954-. . II.. Universidade Estadual de Campinas. Instituto de
Computação. . III.. Título.

Informações para Biblioteca Digital

Título em inglês: Shadows : a new means of representing documents
Palavras-chave em inglês:
Database management
Information storage and retrieval systems - Documents
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Claudia Maria Bauzer Medeiros [Orientador]
André Santanchè
Angelo Roncalli Alencar Brayner
Data de defesa: 18-05-2012
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

ii

http://www.tcpdf.org

Institute of Computing/Instituto de Computação

University of Campinas/Universidade Estadual de Campinas

Shadows: a new means of representing documents

Matheus Silva Mota1

May 2012

Examiner Board/Banca Examinadora :

• Prof.a Dr.a Claudia Maria Bauzer Medeiros

Institute of Computing - UNICAMP (Supervisor/Orientadora)

• Prof. Dr. André Santanchè

Institute of Computing - UNICAMP

• Prof. Dr. Angelo Roncalli Alencar Brayner

University of Fortaleza - UNIFOR

• Dr.a Carla Geovana do Nascimento Macario

EMBRAPA - CNPTIA (Substitute/Suplente)

• Prof.a Dr.a Islene Calciolari Garcia

Institute of Computing - UNICAMP (Substitute/Suplente)

1Financial support: CNPq scholarship (process 133815/2010-2) 2010–2012

iv

Abstract

Document production tools are present everywhere, resulting in an exponential growth

of increasingly complex, distributed and heterogeneous documents. This hampers doc-

ument exchange, as well as their annotation and retrieval. While information retrieval

mechanisms concentrate on textual features (corpus analysis), annotation approaches ei-

ther target specific formats or require that a document follows interoperable standards –

defined via schemas. This work presents our effort to handle these problems, providing

a more flexible solution. Rather than trying to modify or convert the document itself,

or to target only textual characteristics, the strategy described in this work is based on

an intermediate descriptor – the document shadow. A shadow represents domain-relevant

aspects and elements of both structure and content of a given document. Shadows are

not restricted to the description of textual features, but also concern other elements,

such as multimedia artifacts. Furthermore, shadows can be stored in a database, thereby

supporting queries on document structure and content, regardless document formats.

v

Resumo

Ferramentas de produção de documentos estão cada vez mais acesśıveis e sofisticadas,

resultando em um crescimento exponencial de documentos cada vez mais complexos, dis-

tribúıdos e heterogêneos. Isto dificulta os processos de troca, anotação e recuperação de

documentos. Enquanto mecanismos de recuperação da informação concentram-se apenas

no processamento de caracteŕısticas textuais (análise de corpus), estratégias de anotação

de documentos procuram concentrar-se em formatos espećıficos ou exigem que o docu-

mento a ser anotado siga padrões de interoperabilidade – definidos por esquemas. Este

trabalho apresenta o nosso esforço para lidar com estes problemas, propondo uma solução

mais flex́ıvel para estes e outros processos. Ao invés de tentar modificar ou converter um

documento, ou concentrar-se apenas nas caracteŕısticas textuais deste, a estratégia de-

scrita nesta dissertação propõe a elaboração de um descritor intermediário - denominado

shadow – que representa e sumariza aspectos e elementos da estrutura e do conteúdo de

um documento que sejam relevantes a um dado domı́nio. Shadows não se restringem à

descrição de caracteŕısticas textuais de um documento, preservando, por exemplo, a hi-

erarquia entre os elementos e descrevendo outros tipos de artefatos, como artefatos mul-

timı́dia. Além disto, Shadows podem ser anotados e armazenados em bancos de dados,

permitindo consultas sobre a estrutura e conteúdo de documentos, independentemente de

formatos.

vi

Acknowledgements

First and foremost, I would like to thank Professor Claudia Medeiros, for the example

of dedication, for all opportunities, for all advices that made me grow professionally and

personally, for all scolding and caring, for believing in my research potential and for all

time and patience dispensed to me in order to introduce me to the art of scientific research.

I would like to thank the amazing members of the Laboratory of Information Systems

(LIS), for the moments of learning, for the patience, for sharing moments of difficulty, for

the good laughs and for the friendship consolidated over the years.

I would like to thank colleagues, faculty and staff of the Institute of Computing and of

UNICAMP, for all the attention, for the moments of learning and for the companionship

that created a healthy environment for the development of this research.

I would like to thank my parents, Olga and Antônio, and my sister, Láıs, for the

infinite love, for all support and dedication, for being my safe harbor in times of storm,

for always putting a smile on my face even when facing many difficulties, for the example

of faith and for always believing in my potential.

I would like to thank my good friend Ivo Koga, for sharing moments of difficulty and

joy, for all laughs and for all attention that were fundamental throughout this period.

I would like to thank my huge and amazing family, for all support and love.

I would like to thank my good friend Ricardo, for his presence, even at distance, for

the support, for sharing moments of difficulty and joy, for all laughs and for the friendship.

I would like to thank Jessica, Augusto, Neide, Rita, Thainná, Dona Graça, Nı́colas e

Diego, for constant support and for all important and unforgettable attitudes and words.

I would like to thank my housemates, for their patience and attention, for the good

laughs and for welcoming a new comer to Campinas.

I would like to thank CNPq2, CAPES, FAPESP and the INCT in Web Science for the

financial support.

I would like to thank many other people that were not mentioned but also believed,

supported, participated, collaborated with this work and nevertheless remain anonymous

in these acknowledgments.

2For the scholarship – process 133815/2010-2

vii

Contents

Abstract v

Resumo vi

Acknowledgements vii

1 Introduction and Motivation 1

2 Basic Concepts and Related Work 4

2.1 Resource Descriptors . 4

2.1.1 Image descriptors . 4

2.1.2 Metadata and Metadata Standards 5

2.1.3 Other Descriptors . 8

2.2 Document Management . 8

2.3 Document Annotation and Retrieval . 10

2.4 Semantic Web . 11

2.4.1 Semantic Annotations . 11

2.4.2 Linked Data and Entity Linking . 11

2.5 Conclusions . 13

3 Shadow-driven Document Representation 14

3.1 Overview . 14

3.2 Abstract Model . 17

3.3 Shadow Instantiation . 19

3.4 Construction of a Shadow Base . 20

3.5 Conclusions . 21

4 Implementation of a Shadow Generation Process 23

4.1 Overview . 23

4.2 Technologies Adopted . 25

viii

4.3 System Architecture and Implementation Details 26

4.3.1 Shadow Schema . 26

4.3.2 Instantiating the Extractor Module – DDEx 28

4.3.3 Shadow Builder Module . 33

4.3.4 Shadow Production and Storage . 34

4.4 Conclusions . 36

5 Case Study 37

5.1 Part I: Construction of a Shadow Base . 37

5.2 Part II: Querying the Shadow Base . 39

5.3 Part III: Annotating Documents via Shadows 42

5.3.1 Producing Semantic Annotations 42

5.3.2 Querying Annotations . 44

5.3.3 Using Shadows to Extract Geo-knowledge 46

5.4 Conclusions . 48

6 Conclusions and Future Work 49

6.1 Conclusions . 49

6.2 Future Work . 50

Bibliografia 52

ix

List of Figures

2.1 Components of an image descriptor (according to [10]) 5

2.2 Overview of the three metadata building blocks (source [23]) 7

2.3 Example of a generated image that represents the visual rhythm of a video

(source [49]) . 9

3.1 Abstraction of the main idea behind the SdR strategy 16

3.2 Abstraction of a shadow schema and the relationship between the element

types. Label l1 of the schema refers to element of type tr and so on 18

3.3 Overview of the abstract shadow generation process. 21

4.1 Overview of the Implemented shadow generation process and a comparison

with the abstract process . 24

4.2 Implemented shadow generation process and some of the technologies adopted 25

4.3 Internal organization of the DDEx API . 29

4.4 Overview of modules involved in the analysis of document content analysis

and shadow production . 31

4.5 Example of how the document analyst recognizes an image with a caption

via type matching of composite elements 32

4.6 Overview of the shadow builder module . 33

4.7 Piece of a document and the corresponding shadow 34

5.1 Shadow schema (XML) adopted in the case study 38

5.2 Abstraction of the shadow schema used in the case study 40

5.3 Fetched shadows from a query “documents with x images” 41

5.4 A captioned image within a document (left part) and a corresponding

shadow XML code (right part) . 43

5.5 SPARQL code to create a nannotation . 44

5.6 SPARQL code for querying the Virtuoso database 45

5.7 Abstraction of the relation between a shadow, the corresponding document

and the link between an element and an external data set 47

x

5.8 Screenshot of an initial prototype for visualization of the geo-knowledge

extracted from the connection between document and LOD datasets 48

xi

Chapter 1

Introduction and Motivation

The Web has become a huge platform for document publishing, with easy access to sophis-

ticated document production tools. The evolution and multiplication of these authoring

tools brought about the proliferation of document formats, resulting in an exponential

growth of increasingly complex, distributed and heterogeneous documents.

Ideally, document production tools should produce interoperable documents. However,

in most cases, such tools have not been conceived to produce files with explicit structure.

They strongly couple the content to the file structure and software representation [44, 24,

43]. Furthermore, document production tools have increasingly been offering support for

more than flat text, handling also artifacts such as charts, tables or multimedia elements.

This further increases the problem of document heterogeneity and complexity.

In a scenario with high diversity of non-interoperable formats and a large volume of

complex documents, challenges arise when it comes to management, storage and retrieval

techniques, correlation algorithms and new methodologies to present, annotate and mine

documents and their content. In addition, there are problems related to documents pro-

duced to be used in multiple contexts – for instance, in the context of scientific research,

participating research groups have different needs of document handling [24].

Document management and retrieval systems use three main strategies to deal with

large volumes of complex and heterogeneous documents [27, 29, 9]. The first strategy sup-

ports only some specific file format, making it necessary to convert the original document

to the supported format. The second strategy requires documents that follow interoper-

able standards (e.g., XML) or structures. The third strategy considers a document to be

a general digital artifact, supporting only metadata and requiring user assistance. The

first strategy presents problems when original file preservation is needed. In strategy two,

the main difficulty is to handle format diversity, since interoperable formats and prede-

fined schemes are a prerequisite. On the other hand, approach three deals very well with

the diversity of file formats, but provides limited support to indexation, retrieval and

1

2

annotation.

This dissertation presents Shadow-driven Representation (SdR), a novel strategy to

represent documents independently of format, preserving the original file and handling

large volume of documents. A shadow is an interoperable document descriptor that sum-

marizes key aspects and elements of a document, preserving their structural relationships.

These elements (e.g., sections, tables, embedded multimedia artifacts, references) are de-

fined by users (e.g., research groups may have different interests), and thus one document

may have many shadows. Once a set of elements of interest is defined, shadows are

instantiated based in this set. Unlike other approaches in the literature that restrict doc-

ument description to text, shadows consider other kinds of elements within a document,

such as tables or images, thereby supporting a wide variety of operations and correla-

tions. Though we have implemented shadows as XML documents stored in a database

(our shadow base), this is just a possible materialization of the concept, which transfers

document querying tasks to the DBMS.

The main advantages of the SdR approach are: (i) a shadow isolates domain-relevant

elements in a document, regardless of formats; (ii) shadows can have have different gran-

ularity levels and concern distinct types of elements, depending on the domain needs;

and (iii) shadows follows established interoperability standards, allowing automatic and

semi-automatic machine consumption.

This dissertation also presents a validation of the SdR strategy, discussing problems

and solutions of a full SdR implementation. In addition, this work presents a case study,

where shadows are used to produce semantic annotations that link documents concerning

biodiversity studies to open data on the Web. This dissertation was developed in the LIS

- Laboratory of Information Systems - Institute of computing of UNICAMP.

The main contributions of this dissertation are:

• Proposal and specification of a technique for document representation that supports

large volumes of heterogeneous documents;

• A validation of the proposal via an implemented prototype, that covers the full cycle

of shadow specification, creation, annotation and management;

This research led to the following publications:

• “Shadow-driven Document Representation: A summarization-based strategy to rep-

resent non-interoperable documents”. Matheus Silva Mota and Claudia Bauzer

Medeiros. XI Workshop on Ongoing Thesis and Dissertations WebMedia, 2011.

• “Using linked data to extract geo-knowledge”. Matheus Silva Mota, João Sávio C.

Longo, Daniel Cintra Cugler and Claudia Bauzer Medeiros. XII Brazilian Sympo-

sium on GeoInformatics (GeoInfo), 2011. (Received the Best paper Award) [35]

3

The text is organized as follows. Chapter 2 introduces concepts and related work.

Chapter 3 presents a detailed explanation of the SdR approach. Chapter 4 presents our

implementation of the SdR strategy and discusses implementation details. Chapter 5

presents a case study where we use shadows to allow semantic annotations of documents

in the biodiversity context. Finally, Chapter 6 presents conclusions and ongoing work.

Chapter 2

Basic Concepts and Related Work

This chapter presents basic concepts related to this dissertation, and related work. Sec-

tion 2.1 describes resource descriptors, such as image descriptors (Section 2.1.1) and

metadata (Section 2.1.2). Section 2.2 discusses research on document management, while

Section 2.3 concentrates on document annotation and retrieval. Section 2.4 presents

concepts and technologies related to the Semantic Web, such as semantic annotations

(Section 2.4.1) and linked data and entity linking (Section 2.4.2). Finally, Section 2.5

presents conclusions.

2.1 Resource Descriptors

2.1.1 Image descriptors

An Image Descriptor is a data structure that summarizes the content of an image. Ac-

cording to [10], an image descriptor can be defined as a pair composed of a feature vector

and a distance function. The feature vector represents a set of properties (e.g, shape,

color, texture) extracted from images. The distance function (or similarity) is used to

compare feature vectors through a specific metric [32, 30]. Figure 2.1 shows the main

components of an image descriptor, and how they are used to compare two images. Here,

the descriptor is a pair < εD, δD >.

To extract visual properties, image processing algorithms usually focus on specific

characteristics of an image and mainly follow two steps: (i) points of interest are identified

and pass through a feature extraction process; and (ii) values are computed based on

each point of interest, according to the type of information that needs to be extracted or

recognized [30, 1].

Image descriptors have two main advantages: (i) the features extracted can be stored

for subsequent processing; and (ii) different image descriptors (e.g., based on color, shape,

4

2.1. Resource Descriptors 5

Figure 2.1: Components of an image descriptor (according to [10])

texture and others) can be combined, implying on scalability [32, 15, 34]. These advan-

tages can be clearly noted on applications that process large volumes of images (mainly

indexing and retrieval). Basically, these applications pre-process each image and gener-

ate/store feature vector(s), according to the application needs. Later, instead of perform-

ing management tasks over the image itself – which can be costly –, applications process

its feature vector.

Image descriptors are particularly helpful in understanding our shadow-driven repre-

sentation (SdR) approach. As will be seen in Chapter 3, rather than looking for matches

of metadata or annotations, or opening a document to extract specific characteristics –

which is the usual approach in document management systems –, the SdR strategy pre-

processes and extracts points of interest (key elements) of a document. Then, based on

the extracted features, we generate a structure that describes the document. Like im-

age descriptors, shadows are stored apart of the documents themselves, and can be used

to process them – Section 5 presents case studies where we use shadows to indirectly

annotate and retrieve documents, independently of file formats.

2.1.2 Metadata and Metadata Standards

Metadata can be seen as a high level description of data, providing an organization of

descriptions of digital or non-digital resources [23]. In this section, we discuss metadata

focusing only on metadata for digital objects, in information systems.

Metadata, or meta-information, is a structured information and regulatory tool to

2.1. Resource Descriptors 6

explain, locate, identify and describe resources, allowing information exchange/integration

and helping users or management tools [50]. Metadata are usually associated with retrieval

tasks.

These “data about data” or “information about information” provide semantics and

can be associated with some resource or parts thereof [18, 13]. In the literature, meta-

data are mainly related to the following purposes: resource description; information

retrieval; information exchange (interoperability); management of information (lineage,

trust); rights, ownership and authenticity management [23]. Metadata information are

classified according to their function (descriptive, structural, administrative, rights man-

agement, preservation) and to its level of semantic abstraction (low-level and high-level)

[38].

Low-level metadata (usually more technical, e.g., file-type, an image width or a file

size) have less value for end users. However, they are commonly used by information sys-

tems in order to support simple management tasks (since data types are usually primitive,

e.g., integers, floats and predefined strings). High-level metadata – semantically rich

descriptive information – are more interesting to end users, since they can describe se-

mantic entities (events, concepts, states, places). Nevertheless, such information is usually

provided by humans as free text or tags, hampering automatic machine consumption.

Both high and low-level metadata fields are not designed to support sophisticated

management tasks, but are widely used as input to several approaches that process this

information in order to produce indices, descriptions, clusters etc. In information systems,

the appearance of metadata can be divided in the following levels [23].

• Physical level: stored/stream of bits and bytes. This level is usually hidden from

applications and users. At this level, information systems focus on optimizing record

allocations in file systems, compression and other raw-data tasks;

• Logical level: database management systems level. Here, a more technical meta-

data schema (which can be defined via some information model, e.g., Relational

Data Model) can be written via some data definition language. Metadata instanti-

ation should follow these definitions;

• Programming/representation: the metadata schema expressed in code (of some

programming language), transforming metadata instances in instances of the appli-

cation domain. At this level, metadata can be persisted via some mark-up languages

(XML) or other data representation tool;

• Conceptual: domain entities with their attributes and relationships. At this level,

Entity-Relationship model or Unified Modeling Language can be adopted to repre-

sent real-world entities and their attributes and relations.

2.1. Resource Descriptors 7

According to [23], and represented in Figure 2.2, there are three metadata building

blocks:

Figure 2.2: Overview of the three metadata building blocks (source [23])

1. Schema Definition Language: the domain specific metadata schema must be

represented in some schema definition language (e.g., XML Schema, SQL-DDL,

RDFS, OWL, UML).

2. Metadata Schema: set of metadata elements – or fields – and their names and

(optional) encoding/syntax rules.

3. Metadata Instance: the information about the digital object itself, associated

with a predefined element of the Metadata Schema.

Different domains and needs may require distinct metadata vocabularies. Metadata

standards propose and define a set of elements that improves data sharing and integration

among different users and applications.

2.2. Document Management 8

As presented in Chapter 3, a shadow is a document descriptor that should contain

domain relevant elements extracted from documents [50, 23]. Our solution to create and

persist this descriptor produces a hierarchical set of metadata instances (following widely

adopted metadata standards), according to the set of elements of interest defined by a

user-produced schema. As presented in Chapter 4, we use a set of metadata standard

initiatives related to documents and other kinds of digital objects – that usually appear

inside documents – to define types of elements within documents in a shadow.

2.1.3 Other Descriptors

Other research areas also adopt the notion of descriptors in order to perform computa-

tional tasks. Mainly, those areas use descriptors for more efficient processing and queries

– content-based retrieval, for instance. Some of those descriptors are:

DNA and protein sequences descriptor: Since they are large sequences, many

researchers propose the notion of descriptors (also known by domain experts as suffix

vectors) for both DNA and protein sequences. Such work focus, for instance, in performing

more efficient queries on biological databases [37] or allowing more efficient similarity

discovery [41]. Basically, this kind of descriptor summarizes the sequences preserving

representative structural features that characterize a species. Later, instead of processing

the sequence itself, those descriptors are processed.

Descriptors for video file processing: There are two main approaches [25] to

produce a summary or execute a content-based query for video files: (i) Producing an

image (usually very large, depends on the input file and on the strategy adopted) that

represents the whole video and its temporal events [47, 49]; and (ii) selecting a key frame

for the whole video or a key frame [45, 7, 42] for specific parts of the video – there are

different ways to split the video. In both approaches, an image is produced or selected

in order to allow more efficient queries (frame by frame comparison is costly). Instead of

processing the video itself, those systems process the generated images, also using image

descriptor. Therefore, such images act like a video descriptor.

Figure 2.3, for instance, is an example of image that represents the visual rhythm

of a video. Basically, the visual rhythm is a combination of slices of frame sequences

(Figure 2.3 specifically represents a sequence of captioned frames in a video).

2.2 Document Management

As stressed in Chapter 1, document management and retrieval systems use three main

strategies to deal with large volumes of complex and heterogeneous documents [27, 29,

9]. The first strategy supports only some specific file format, making it necessary to

2.2. Document Management 9

Figure 2.3: Example of a generated image that represents the visual rhythm of a video
(source [49])

convert the original document to the supported format. The second strategy requires

documents that follow interoperable standards (e.g., XML) or pre-defined schemas. The

third strategy considers a document to be a general digital artifact, supporting only

metadata management and requiring user assistance. The first strategy presents problems

when original file preservation is needed. In strategy two, the main difficulty is to handle

format diversity, since interoperable formats and predefined schemes are a prerequisite.

Approach three deals well with file format diversity, but provides limited support to

indexation, retrieval and annotation.

Document retrieval systems widely adopt automatically generated semantic annota-

tions or free manual annotations to support indexation and retrieval [27, 29, 9]. Existing

tools for manual document annotation can be divided in two categories. The first one

produces a file (stored in or with the document) that contains annotations and/or mod-

ifies the original document by inserting annotations into it. This approach hampers the

process of indexation, exchange and sharing of annotations. The second category is Web-

based, holding documents and annotations on a database or library. Once the annotations

are produced, they can be shared with a specific group of users or can be used by other

applications.

Independently of where annotation are made, annotation tools allow three main anno-

tation strategies. The first strategy concentrates on some specific file format, converting

the original document and annotating the converted file. The second strategy requires a

file that follows some interoperable standard (e.g., XML). On the other hand, the third

strategy deals with documents as images, allowing annotations by floating free-shape lay-

ers. Those approaches present problems when there is need for, respectively (i) original

file preservation; (ii) format diversity handling; and (iii) document specificity and internal

artifacts handling As will be seen, shadows are a means to solve these issues.

2.3. Document Annotation and Retrieval 10

2.3 Document Annotation and Retrieval

Shadows describe documents, and thus must be compared with document description and

extraction techniques found in the Information Retrieval (IR) and database literature. IR

is primarily concerned with textual evidence. There are countless techniques to extract

relevant keywords, concepts, sentences from a document in order to represent or describe

it. There is also the need for a corpus that defines the basis for extraction algorithms.

Representation structures may be used to index, rank and retrieve documents. Once

these structures are created, sets of documents can be clustered according to them – e.g.,

to correlate documents, or summarize them. These structures can also be used to identify

documents that are representative of a set – a set of documents can be summarized by a

document, i.e., by the structure that represents a document, e.g., [21].

Another means to represent documents in IR is the use of metadata, often taking

advantage of metadata standards like Dublin Core [11]. In particular, if documents are

written in XML, then element tags can also be used (and in this case they are sometimes

called facets [58]). The same kind of strategy is adopted by [54], that represents a docu-

ment by a vector of concepts, and then tries to reduce the dimensionality of this vector

to speed up document retrieval, clustering and comparison.

While most IR research considers documents immutable, recent efforts are being un-

dertaken to update the representation structures when documents are updated (e.g.,[53]).

Web database work on document management is intimately related to these IR tech-

niques, with a difference – the latter are mostly centered on text indexing and processing,

whereas the former are concerned with issues such as query formulation and optimiza-

tion, indexing and storage strategies, as well as using ontologies to enhance document and

query semantics. An example of the latter approach is found in [56], in which ontologies

are used to extract information from documents.

Database literature in this area is nevertheless heavily centered on XML documents

databases (as opposed to other kinds of documents). As pointed out by [48], there is

however a difference between what they call “text-centric XML” – the IR approach, in

which information structure is mostly disregarded – and ”data-centric XML” (in which

the structure is taken advantage of, e.g., in queries or in document correlation). As will be

seen, we follow the data-centric approach, since we implement shadows as XML documents

stored in an XML database, where queries take advantage of structural relationships

among content elements.

2.4. Semantic Web 11

2.4 Semantic Web

The Semantic Web is commonly defined as the Web of Data [2]. The main difference

between the Web as we know today and the Semantic Web is the focus on the meaning

of the data, not only in availability and sharing as before. This information is not re-

lated to human consumption, but aims to help machines to understand and consume the

information on the World Wide Web [2, 3].

2.4.1 Semantic Annotations

Annotations acquire more semantics when they follow structural schemes and relate con-

cepts and relationships between concepts and/or resources. This strategy allows machine

consumption, and therefore the development of new types of applications [28], such as

text categorization or multimodal information retrieval.

The concept of Semantic Annotation is derived from the textual annotation concept.

Such annotations can have different objectives [40] and be produced and structured in

many forms (e.g., links, free remarks, tags, floating layers etc) [14, 31, 6]. Annotations are

used, among others, to describe a resource, its relations and what it represents. Informal

annotations are usually inserted on documents for human consumption. This hampers

computer processing and annotation exchange.

Semantic annotations appeared with the purpose of third-party interpretation, provid-

ing explicit and machine interpretable semantics, as supported by Semantic Web standards

[28, 14].

As will be seen in Section 5.3, instead of annotating documents, we annotate shad-

ows, thereby concentrating all processing requirements on the shadows, again ensuring

independence from specific document formats.

2.4.2 Linked Data and Entity Linking

The notion of Linked Data appeared in the Semantic Web context. The term Linked

Data is related to a set of practices for publishing and sharing structured data on the

Web. Basically, Linked Data uses the RDF (Resource Descriptor Framework) format to

construct typed statements that link things [5, 4]. The 4 “rules” of linked data are: (i)

Use URIs as names of things; (ii)use HTTP URIs so that people can look up those names;

(iii) when someone looks up a URI, provide useful information; and (iv)include links to

other URIs, so they can discover more things [3].

One of the first projects related to Linked Data was DBPedia [2]. The main goal

of the DBpedia project is extract structured content from Wikipedia pages, and make

them available on the Web. Basically, DBpedia is a RDF dump of the contents produced

2.4. Semantic Web 12

collaboratively via Wikipedia, allowing the reuse and the exploration of these contents in

many other contexts. As will be seen in Chapter 5, we use DBPedia to link Shadow to

semantic information.

Linking Open Data1 (LOD) is a W3C project related to the linked data publishing

method. Its main goal is to make several open data sets available and connected on the

Web (such as DBPedia, Geonames, WordNet, the GeoSpecies Knowledge Base etc.). To

do that, the data sets must publish the data using RDF serialization formats, where URIs

link resources on the Web [4]. The LOD project has created a a machine consumable

interlinked graph. By September 2010, the project had produced 203 data sets, over 25

billion RDF triples interlinked by around 395 million RDF links. Commonly, DBpedia is

described as one of the more famous parts of the Linked Open Data project.

The Linked Data paradigm has made data sharing on the Web easier and enhanced

the possibility of aggregating like concepts, creating semantic clusters (e.g., [57]). The

same goal is found in the database realm, under the Entity Linkage concept, going beyond

the interrelationships among Web documents. The idea is to recognize different artifacts

that refer to the same real world object, and connect all entities that relate to it, linking

them together. This, in turn, allows exploratory queries, and finding out more about an

object. Entity linkage is also a strategy proposed for loose integration of heterogeneous

data sources.

As pointed out by [26], there are many names under which entity linkage is studied –

e.g., deduplication, or entity resolution. Once the linked cluster of entities is constructed,

it can be further processed – e.g., eliminating duplication of records, cleaning errors,

assigning probabilities to the links (e.g. [26]) or creating graphs that exploitsemantic

dependence across linked entities (e.g., [22]). As exemplified in Chapter 5, we process our

shadow base under the Linked Data principles, annotating documents via their shadows

with DBPedia concepts. Thus, Shadows are used as a means to immerse documents in

the Semantic Web.

1http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

2.5. Conclusions 13

2.5 Conclusions

The strategy presented in this dissertation is inspired by the concept of resource descrip-

tors. Descriptors are structures that summarize aspects of some digital object in order

to help its indexing, comparison and retrieval [10].

More specifically, our representation strategy borrows from two research fields: image

management and metadata standards, described in this chapter. The chapter also points

out some basic mechanisms for document management and retrieval, and gives an overview

of linked data – all of which will used in the rest of this text.

As discussed in Section 2.2, there are three main strategies related to document pro-

cessing. Table 2.1 presents a comparison between the three strategies and the SdR ap-

proach. For instance, Table 2.1 shows that the SdR approach considers documents’ struc-

ture and content, preserves original files and offers support to multiple formats, while

none of mentioned approaches met these three characteristics.

Characteristics

Strategy
Consider documents’
content and structure

Preserve
original file

Support
multiple formats

Documents as
general artifacts

no yes yes

Conversion to
a specific format

yes no yes

Interoperable
formats only

yes yes no

Shadow-driven
approach

yes yes yes

Table 2.1: Comparison between the SdR approach and the approaches described in Sec-
tion 2.2

The next chapter presents the SdR – Shadow-driven Representation– proposal itself,

discussing and defining the idea behind shadows.

Chapter 3

Shadow-driven Document

Representation

This chapter presents the Shadow-driven Representation (SdR), a strategy to extract

and represent domain relevant elements of documents independently of file formats, and

is organized as follows. Section 3.1 gives an overview of the main idea behind shadows.

Section 3.2 presents an abstract model and discusses the main concepts related to the SdR

approach. Sections 3.3 and 3.4 discuss a strategy to generate shadows and to construct a

shadow base, respectively. Finally, Section 3.5 presents conclusions.

3.1 Overview

In this work documents are treated as special cases of complex objects, i.e., they are self-

contained units, defining recursive hierarchical containment structures – e.g., a document

contains sections, which contain paragraphs, which contain words etc.

The SdR strategy is inspired on the concept of resource descriptors (presented in Sec-

tion 2.1) and aims to provide transparent1 support for tasks related to document man-

agement, such as indexation, annotation, version control and derivation, and discovery of

correlations.

Rather than requiring a specific format or converting the document to a given format

to perform some task, the SdR approach proposes an intermediate structure – called

shadow – which represents key elements of a document. These elements can be defined

by users, according to their needs.

1Transparency, here, means that the applications that handle the documents do not need to be
specialized

14

3.1. Overview 15

An analogy with image descriptors2 provides an initial context for understanding shad-

ows. First, a shadow isolates a document’s format and content from its processing, thus

providing a uniform description for a set of documents that can be in many different

formats and with a variety of structures. Second, a document can have as many shadows

as desired - and thus be (indirectly) processed and queried as wished.

Figure 3.1 presents an abstraction of the main idea behind SdR, where a shadow

can represent different document formats, and a document can have different shadows,

depending on the domain-user needs. The left side of Figure 3.1 shows a document in

some format, while the right side of the figure shows two shadows that represent the same

document, but concerning different information.

Still in Figure 3.1, both produced shadows (Shadow 1 and Shadow 2 of figure) will be

the same, regardless of the original format of the document they represent (e.g., in PDF

or ODT3). Also, Shadow 2 is concerned only with features4 like title, authors and images

and their captions, whereas Shadow 1 describes many other elements.

From a conceptual point of view, shadows can be seen as document descriptors, in the

sense that they describe structure and contents of a document according to the specifi-

cation of a group of users. Figure 3.1 also illustrates the fact that shadows preserve the

structure – e.g., Shadow 2 shows that in the document the title precedes the authors, the

image precedes the caption and so on.

Shadow Schema and Definition of Elements of Interest

Different domains may have different needs of document handling [24]. To illustrate that,

consider a collection of scientific papers in different formats. Users of a domain P1 may be

interested in searching the collection by using parameters like title, authors and keywords.

On the other hand, a different domain P2 may be interested in more specific tasks over

the collection, such as processing images inserted in the documents, or even searching for

sections labeled as “Results” or correlate bibliographic references.

In order to handle these needs, specialized applications are developed and customized.

These specialized solutions for P1 and P2 will eventually face problems such as “how to

perform extraction of elements?”, “how to handle format heterogeneity?”, “what data

structure or database should be adopted?”. Again, these questions will require different

and specialized solutions.

2We could drive the same analogy with sound descriptors, but chose images because of the vast
literature in image databases

3As presented in Chapter 4, we implemented an API that supports the extraction of elements from
textual documents in formats like doc and docx, odt and pdf. That chapter also gives more detailed
information about the support for those formats

4The term feature here is related to elements of the structure and the content of a document

3.1. Overview 16

Figure 3.1: Abstraction of the main idea behind the SdR strategy

Continuing the example, in the SdR approach, instead of concerning themselves with

specialized solutions, users of both P1 and P2 need to define their elements of interest. In

analogy to databases, we say that these elements define the shadow’s schema, and that

this schema is instantiated for the individual documents in the set.

Intuitively, a Shadow Schema specifies which elements should be recognized and rep-

resented in the corresponding descriptor (shadow). This definition drives the process of

document analysis and shadow instantiation. The possibility of defining different subsets

of elements and element levels makes the shadow representation scalable.

In more detail, users define which structural/content elements of a set of documents

are relevant to their purposes (e.g., sections, tables, images, captions); and a document

collection is processed to construct shadows according to this choice. Thus, a given

document can have many shadows (e.g., just as an image can have many descriptors,

depending on the features of interest selected).

3.2. Abstract Model 17

3.2 Abstract Model

The generation of a shadow is divided in two steps: (a) Definition of elements of interest

(the schema); and (b) instantiation of the shadow (for each document in a collection) based

on the set of elements of interest defined by users. Stage (b) is organized in two parts: (i)

document analysis and recognition of elements of interest; (ii) shadow instantiation.

In the definitions that follow, we adopted database terminology to define shadows, to

facilitate understanding the underlying concepts. These are not, however, formal defini-

tions – e.g., our ”shadow element types” are not types from a formal point of view. We

say that a shadow is a descriptor of a document under a schema, since distinct schemas

result in different shadows.

Let D = {d1, d2, d3, ...dn} be a set of arbitrary documents (in several formats). For

each document d ∈ D, we can define:

Definition 1 A document d is a tuple 〈E,H〉 where E is a set of instances of elements

within a document, E = {e1, e2, e3, . . . , en}, and H is a tree structure whose root is the

entire document and whose nodes are elements of E.

Definition 2 Each recognizable instance ei ∈ d is associated with a type tα ∈ T . T =

{ta, tb, tc, . . . , tω} is a set that contains all element types, such as page, section, chapter,

image, table or other element types defined by users5.

As presented before, in the SdR approach, users may define elements of interest. This

definition is a set of types of elements, giving origin to the shadow schema, defined as:

Definition 3 A shadow schema Σ = (L, J) is a tuple that contains a set of labelled

element types (L) which users are interested in and the relationship between the types (J).

L is a set of pairs associating labels (l) and element types (t) L = {l1 : ta, l2 : tb, . . . , lk :

tω}, where tω ∈ T . J is a tree structure that describes the hierarchical relationship among

the elements of L.

As presented in Figure 3.2, the shadow schema can be seen as a labeled tree of types

of elements, corresponding to the elements of interest. These elements are associated

with document content (e.g., table, paragraph, list of references) and can be related

hierarchically as regards a document’s structure (e.g., users may be only interested in

captions of images, but not on captions of tables). As highlighted in Figure 3.2, users

also can specify that the relation between element types is optional – instances of td not

necessarily need to contain instances of type tn.

5Users should be able to specify element types via shadow schema

3.2. Abstract Model 18

Figure 3.2: Abstraction of a shadow schema and the relationship between the element
types. Label l1 of the schema refers to element of type tr and so on

As presented in Chapter 4, for implementation purposes, element types are specified

via metadata standards and/or namespaces in a pre-defined shadow schema vocabulary,

and can preserve an element’s hierarchical structure within d. The use of such standards

in the schema definition allows processing documents according to distinct domain needs

and vocabularies.

Shadow

As mentioned in the introduction to this chapter, this work treats documents as spe-

cial cases of complex objects [8], i.e., they are self-contained units, defining recursive

hierarchical containment structures – e.g., a document contains sections, which contains

subsections, which can contain a image or a table etc. Shadows do therefore describe a

document’s structure and contents.

Since each element instance is associated with a type, we can define:

Definition 4 given a shadow schema Σ, there exists a mapping function δ : d → Σ

capable of relating an element instance e ∈ d with a type t ∈ Σ.

3.3. Shadow Instantiation 19

Definition 5 A shadow Sd(Σ) for a document d is a set that contains instances of

elements relevant to a domain of a document d, under Σ.

Given this, a shadow can be defined as Sd(Σ) = {ex ∈ d | δ(ex) ∈ Σ}

It is important to note that different domains may have different needs, implying in

different schemas. For instance, in the example presented on the overview, the domain

P1 will define a schema Σa and the domain P2 will define a schema Σb. Then, shadows

Sd(Σa) and Sd(Σb) represent the same document d, but concern different elements of the

document’s structure and content.

3.3 Shadow Instantiation

Considering the definitions mentioned in previous section, the production of a shadow

can be seen as a 4-uple M = (d, Sd(Σ),Σ, δ). As presented in Algorithm 1, to produce

a shadow Sd(Σ) for a document d, basically, an algorithm will need to open the docu-

ment d and process its content in order to recognize and extract instances of types of

elements. Such elements will be represented and persisted into the shadow Sd(Σ) using a

corresponding label. Shadow construction is performed element-wise, i.e., every instance

of an type of element of interest found in d is described in Sd(Σ).

Let tΓ be a type, and tΓ ∈ Σ. Let ei denote an instance of a type tΓ within document

d. Then,

Sd(ei) = ei
∨
Sd(ei) = URI(ei)

i.e., each instance of an element of interest in a document can be described in the shadow

in two ways: the instance can be copied into the shadow using the corresponding label,

or be pointed at by the shadow via an URI. As will be seen in the next section, this URI

refers to some repository into which the instance ei is copied for subsequent processing –

the choice depends on user requirements.

As we present on Chapter 4, we developed an extractor capable of extracting and

recognizing instances of elements of interest and produce shadows according to a given

shadow schema.

From an implementation perspective, shadows are specified as a well formed XML

document, where element tags reference ontologies or metadata standards – i.e., all tags

have semantics.

Since shadows are themselves implemented as XML documents, they can be subse-

quently processed using, for instance, Information Retrieval (IR) techniques – e.g., to

identify string patterns – but they can serve many other purposes.

3.4. Construction of a Shadow Base 20

Algorithm 1 Shadow-Generator(d, Σ, δ)

1: read(Σ)
2: open(d)
3: for all instances ei ∈ d do
4: if δ(ei) ∈ Σ then
5: if the instances should be local then
6: add ei to Sd(Σ) preserving its hierarchical relationship
7: else
8: store ei in the repository
9: add URI(ei)) to Sd(Σ) preserving its hierarchical relationship

10: end if
11: end if
12: end for
13: Return Sd(Σ)

3.4 Construction of a Shadow Base

A shadow base is a data repository where shadows are stored. A set of documents D

gives origin to one (or multiple) shadow base(s) B, in which shadows can be queried and

processed independent of the original document format. In an image base, for instance,

images are not ranked or accessed directly – rather, it is the descriptors that are used to

rank and access the images.

However, shadows are by construction very different from image descriptors. The

fact that they have a schema and contents allows us to construct actual databases of

shadows – and thus query shadows using database languages (as presented in Chapter 5).

Documents become therefore (indirectly) amenable to database management mechanisms.

Second, these database elements are linkable to ontologies – and thus documents become

semantically processable. Third, a shadow base can describe local or remote, centralized

or distributed sets of documents. Finally, shadows describe arbitrary document elements

– not only text, again allowing us to take advantage us database research in document

processing. All these issues will be discussed in the following, and exemplified in Section 5.

Finally, as presented in Algorithm 2, a shadow base B for D under Σ is a set B =

{Sd1(Σ), Sd2(Σ), . . . Sdn(Σ)}.

Abstraction of a shadow base generation

Figure 3.3 illustrates the main steps for constructing a shadow base. First, users define the

elements of interest and their hierarchical relationships, thereby specifying the schema.

Next, the set of documents is processed by an Extractor module that analyzes each

3.5. Conclusions 21

Algorithm 2 Shadow-Base-Constructor(D, Σ, δ, B)

1: for all di ∈ D do
2: Sdi(Σ)←Shadow-Generator(di, Σ, δ)
3: add Sdi(Σ) to B
4: end for

Figure 3.3: Overview of the abstract shadow generation process.

document to recognize the elements of interest, forwarding their instances (or their URI’s)

to the ShadowBuilder module. Finally, the ShadowBuilder constructs the shadows and

stores them in the shadow base.

The Extractor module is a key component in this pipeline. Conceptually, it must be

able to process any document format and identify arbitrary elements, themselves defined

using arbitrary standards and namespaces. Obviously, it is impossible to construct a

universal extractor to satisfy such requirements.

The implementable idea behind the Extractor is that it comprises an extensible set of

functions that recognizes elements within specific document formats, always obeying the

hierarchical definition. In other words, an Extractor can ”extract” any kind of element

within any type of document, as long as code is developed to perform this task. Again

using the image descriptor simile, image descriptors are defined mathematically, but the

actual implementation varies with image format.

As will be seen next, our extractor implementation already supports6 documents in

three formats – .pdf, .doc and .odt. In other words, our shadows can uniformly summarize

documents in these three formats, and recognize a multitude of document element types.

3.5 Conclusions

This chapter presented some details about the SdR proposal, making some definitions

and presenting a abstract model to explain the strategy.

6It is an initial prototype

3.5. Conclusions 22

The SdR – Shadow-driven Representation – strategy is based on building an inter-

operable document descriptor that summarizes key aspects in a document, allowing its

indexing, comparison or annotation.

Shadows can be seen as a generic tree structure that describes a document according

to what users identify as elements of interest (e.g., pages, paragraphs, images, sections

etc.). As will be seen in Chapter 4, we automatically instantiate shadows using a set of

widely adopted metadata standards, after a linear and filetype-sensitive reading – using

the DDEx project7, which was developed by us.

7http://code.google.com/p/ddex

Chapter 4

Implementation of a Shadow

Generation Process

This chapter discusses implementation issues. Section 4.1 presents an overview of these

issues. Section 4.2 presents the technologies adopted. Section 4.3 concerns the architec-

ture of the implemented shadow generation process and presents implementation details.

Finally, Section 4.4 presents chapter conclusions.

4.1 Overview

To show the feasibility of the proposal presented on the previous chapter, we implemented

the entire shadow generation process.

The implementation of a shadow-generator presents many challenges. The first is the

design and development of the extractor, e.g., “how to perform element identification

given the variety of document formats?”. Another issue concerns shadow instantiation,

i.e., “since shadows should be interoperable, how to instantiate and persist elements and

deal with multiple embedded elements inside documents?”.

Our solution to challenge 1 is based on the separation of document processing (recog-

nition of types of elements of interest) and shadow production, and is better described

in Section 4.3.2. We approached the second challenge by constructing shadows as trees

that contain the required information about the document and point to external elements

extracted from the document (i.e., an image or a table). This tree is serialized as a XML

file and stored in a database with native support for XML queries (as presented in Sec-

tion 4.3.4). With this approach, we were able to use already established technologies and

solutions for XML.

This section gives an overview of the big picture of our implementation, presented in

Figure 4.1. This solution has some significant differences from the abstract generation

23

4.1. Overview 24

Figure 4.1: Overview of the Implemented shadow generation process and a comparison
with the abstract process

process (discussed in the previous chapter with Figure 3.3 repeated for clarity sake).

Our implementation to generate shadows is divided in two main steps: (Step A)

definition of elements of interest and schema production; (Step B) shadow generation –

based on the elements of interest defined by domain users.

Step B is organized in three parts: The first part (item 2. of Figure 4.1) concerns

scanning the document in order to recognize the types of elements of interest; the second

part (item 3. of Figure 4.1) concerns the production of shadows, based on the recognized

types, according to the schema.

Item 4 in Step B shows that the Shadow Builder stores the produced shadows in

Shadow Bases, but also stores instances of types of elements of interest extracted from

documents in a second repository. This repository contains elements from the original

document, and are referred to by URIs within a shadow. Such fragments can be for

instance a text dump itself or images within a document. These repositories are a means

to support the manipulation of parts of documents without interfering with the documents

themselves. For instance, we built one repository with images extracted from documents

– thereby allowing indexing of these images – and correlating documents according to this

kind of content.

4.2. Technologies Adopted 25

4.2 Technologies Adopted

Figure 4.2 reproduces the bottom part of Figure 4.1. The whole process presented in

Figure 4.2 was implemented using several technologies, highlighted in red on the figure.

For instance, the elements of interest are defined in XML, and documents are processed

using pure Java and a set of other APIs specialized in handling documents (listed and

described in Section 4.3.2).

As regards Item 3 of Figure 4.2, we use pure Java and XML parsing and serialization

APIs to parse and serialize/persist XML documents (APIs are listed and described in

Section 4.3.3).

On the storage side (Item 4 of Figure 4.2), we store the produced XML files (shadows)

in an XML database system, called BaseX1. BaseX was chosen since it offers native

support for XML query languages, like XQuery [19, 20]. Furthermore, we store pieces

of documents (images, tables, references), extracted from the documents, in a (Web)file

server, Virtuoso2. Virtuoso was chosen because it offers more than a file server, also

having a specialized SGBD for RDF triples that provides native support to RDF and

the SPARQL query language. As presented in Chapter 5, we connect shadows to some

Semantic Web resources via semantic annotations using RDF.

Figure 4.2: Implemented shadow generation process and some of the technologies adopted

1http://basex.org
2http://virtuoso.openlinksw.com

4.3. System Architecture and Implementation Details 26

4.3 System Architecture and Implementation Details

Figure 4.2 gives an overview of the architecture of the implemented solution. In this

section, more low-level details about how users can define a shadow schema (Step A of

Figure 4.2) are presented (Section 4.3.1). Moreover, this section presents further details

about each module of the architecture and discuss implementation details about the mod-

ules involved in items 2, 3 and 4 of Step B of Figure 4.2 (Sections 4.3.2, 4.3.3 and 4.3.4,

respectively).

4.3.1 Shadow Schema

As presented before, the Shadow Schema defines which elements are relevant to a specific

domain, to be persisted in a shadow. In our implementation, users can specify elements

that will compose a shadow by creating a XML file according to a specification.

Basically, this file acts like a template. This template includes all element types,

defined via terms of ontologies or metadata standards. In other words, the shadow schema

contains namespaces and tags that refer to elements of interest. Furthermore, a shadow

schema contains associations, made by users, between types of elements of interest and

namespaces and terms. For instance, users interested in the author(s) of a document can

define the term author from the Dublin Core Standard [11] to represent the author field

in a shadow. Alternatively, a user can define his/her own definition of element author.

Shadow schemas are defined manually in XML. Future work includes developing tools for

shadow schema.

Example of a Shadow Schema in XML

The following XML code presents a piece of the shadow schema used to produce our

shadow base in the case study presented in the next chapter. The code can be divided

in three parts: (i) Namespaces definition; (ii) types of elements of interest; and (iii) the

definition of the relationship between target elements.

Part (i) of the schema is the definition of the valid namespaces in the XML document

(according to the W3C namespaces definiton). The root element is<schematerms:shadowschema/>

(line 4). For instance, line 5 ia property of the root element that defines the Dublin Core

Standard as a valid namespace for the shadow.

Part (ii) of the schema concerns the element <schematerms:targetlist/> (line 10). It

contains the types of elements of interest that should be present in the shadows – e.g.,

author, number of images, sections, title, captions.

The element <schematerms:shadowstructure/> (part (iii) of the code) allows the def-

inition of a hierarchical relationship between the elements previously defined in Part (ii).

4.3. System Architecture and Implementation Details 27

For instance, it defines that only sections with images should appear in the shadow.

Also, (due to the optional flag) sections with images and tables can be persisted in the

correspondig shadow.

1 <?xml version="1.0" encoding="utf-8" ?>

2

3 <!-- Part (i): namespaces -->

4 <schematerms:shadowschema

5 xmlns:dc="http://purl.org/dc/elements/1.1/"

6 xmlns:stextdoc="http://purl.org/shadow/textdoc"

7 xmlns:schematerms="http://purl.org/shadow/schema"

8 xmlns:ddex="http://purl.org/ddex"

9 xmlns:docbook="http://docbook.org/ns/docbook" >

10

11 <!-- Part (ii): types of elements of interest-->

12 <schematerms:targetlist schematerms:instancetype="local">

13

14 <ddex:author/>

15 <ddex:title/>

16 <ddex:keywords/>

17 <ddex:pagecount/>

18 <ddex:imagecount/>

19 <ddex:wordcount/>

20 <ddex:abstract/>

21 <ddex:section/>

22 <ddex:image/>

23 <ddex:caption/>

24 <ddex:table/>

25 <ddex:references/>

26

27 </schematerms:targetlist>

28

29 <!-- Part (iii): Hierarchical structure-->

30 <schematerms:shadowstructure>

31

32 <ddex:section>

33

34 <ddex:url flag="optional" />

35

36 <ddex:image>

37 <ddex:caption flag="optional"/>

38 </ddex:image>

39

40 <ddex:table flag="optional">

41 <ddex:caption flag="optional"/>

42 </ddex:table>

43

44 </ddex:section>

45

46 </schematerms:shadowstructure>

47

48 <!-- Continue...->

49

The second part of the schema definition associates an element in the source document

to its description in the shadow using association terms. For instance, it shows that

4.3. System Architecture and Implementation Details 28

a document’s title should be described using Dublin Core’s (dc) term title, and that a

section should be described in association with DocBook’s term section. It is important

to note that those associations can be different, depending on the user definition.

50 <!-- ... Continuing-->

51

52 <schematerms:associationlist >

53

54 <schematerms:elementassociation>

55

56 <!--Using term TITLE from Dublin Core for title-->

57 <schematerms:elementsource>

58 <ddex:title/>

59 </schematerms:elementsource>

60

61 <schematerms:elementmapto>

62 <dc:title/>

63 </schematerms:elementmapto>

64

65 </schematerms:elementassociation>

66

67 <!--Using term SECTION from DockBook for sections-->

68 <schematerms:elementassociation>

69

70 <schematerms:elementsource>

71 <ddex:section/>

72 </schematerms:elementsource>

73

74 <schematerms:elementmapto>

75 <docbook:section/>

76 </schematerms:elementmapto>

77

78 <schematerms:elementassociation >

79

80 <schematerms:shadowschema/>

81

Once a shadow schema is provided, the extractor module (DDEx) will process the docu-

ment according to this schema. Subsequently, the shadow builder module will map and

serialize the extracted elements in a XML document.

4.3.2 Instantiating the Extractor Module – DDEx

One of the main challenges of this work is to deal with the large volume of documents

and file formats. Format heterogeneity hampers document processing and consequently

the shadow production process. Unlike existing work that converts the document to a

specific format or processes only a textual dump of the document, the SdR approach aims

to produce a intermediate resource that contains instances of domain relevant elements

of a document.

4.3. System Architecture and Implementation Details 29

DDEx3 instantiates the extractor of Figure 4.1. It is a Java framework, implemented

by us, that exports instances of elements of documents to applications, using a standard

representation, thereby allowing these applications to transparently access the content of

documents, regardless of file formats [44].

Figure 4.3 presents an overview on how DDEx is internally organized. Basically,

DDEx offers support to handle textual documents (OpenText block), spreadsheets(Open

Spreadsheet block) and presentations (Open Presentation block)4. Also, DDEx offers a

Util package that supports a set of common features related to document handling – for

instance, a set of features for image handling.

Figure 4.3: Internal organization of the DDEx API

DDEx is implemented according to a specific software design pattern – the Pattern

Builder [16]. The components of this design pattern can be clearly noted on Figure 4.3,

and concern entities:

• Director: This is an entity specialized in processing specific files. For instance, the

package Directors of the OpenText block contains a director specialized in process-

ing .doc and .docx files, another specialized director for .pdf files and yet another

specialized processor for .odt files.

• Builder (ITextBuilder, ISpreadsheetBuilder and IPresentationBuilder): This is a

contract (Interface) between an external applications and the directors. This entity

is responsible for the separation between external application and the reading of

3Open Source Project available at http://code.google.com/p/ddex
4DDEx was designed to support those types of files, but provides only a poor support for spreadsheet

and virtually nothing to presentation files yet

http://code.google.com/p/ddex

4.3. System Architecture and Implementation Details 30

documents by the directors. For instance, a document analyst, implemented by

us, implements this interface in order to receive the elements extracted from the

specialized directors and process it according to a given schema.

DDEx adopts several APIs for document handling, such as iText5, PDFBox 6, PDF-

Clown7 and PDF Renderer 8 for PDF documents. In case of documents produced in

Microsoft Word, DDEx adopts the Apache POI 9 framework. Furthermore, DDEx adopts

the ODF Tool Kit10 and JOpendocument11 for files following the Open Document Format.

Each specialized document processor (director) module within DDEx works as a back-

end module, which recognizes elements from the document’s content and implements a

standard output API able to produce a sequential stream of descriptive calls, reflecting

the document internal structure and content.

The Document Analysis and Content Extraction Process

Figure 4.4 gives a high level overview of the Content Extraction process. A set of format-

specialized processors (extreme left of the figure) identifies and extracts instances of el-

ements from the documents (using specialized processors from DDEx), forwarding them

to a Document Analyst.

The analyst is format independent, and processes elements according to a shadow

schema. It forwards instances of elements as descriptive12 calls to the Shadow Builder

module (more details about the Shadow Builder module are presented in next section).

Those calls are used to build a shadow, independent of document format. Examples of calls

include call(foundSection) or call(foundMultimediaObject) – where object information and

a byte stream of the object itself is transferred to the Shadow Builder.

Figure 4.5 abstracts an important concept in this work: composition. The Document

Analyst is responsible for the task of analysing the composition of elements according to

the schema.

The left part of Figure 4.5 shows an abstraction of a specification of an element. This

element, whose composite type is Image, is defined as follows. An image contains a picture

and a caption. A Picture contains a byte stream13 of the image file. A Caption contains a

5http://itextpdf.com
6http://pdfbox.apache.org
7http://www.stefanochizzolini.it/en/projects/clown/index.html or http://sourceforge.net/projects/clown/
8http://java.net/projects/pdf-renderer/
9http://poi.apache.org

10http://odftoolkit.org/projects/odfdom
11http://www.jopendocument.org/
12The call is always generic, but contains an object (which contains properties) capable of describe the

instance
13The raw set of bytes that correspond to the image

4.3. System Architecture and Implementation Details 31

Figure 4.4: Overview of modules involved in the analysis of document content analysis
and shadow production

Paragraph. A Paragraph contains a string and a newline command, and a Caption should

appear below a Picture.

The right side of Figure 4.5 shows a specific part of a document that fits this spec-

ification of many levels of composition. Since this part of the document “matches” the

specification (defined in the shadow schema), it should be forwarded to the shadow builder

as a descriptive call.

Our decision to build DDEx based on the Pattern Builder, and build the Document

Analyst using DDEx, ensure extensibility of the supported document formats. Since the

Pattern Builder allows the separation between the extraction and the production process,

we were able to take advantage of the three specialized document processors – for .doc,

.pdf and .odt files. Hence, the Shadow Builder does not need to change even if DDEx

provides support to new formats of documents.

4.3. System Architecture and Implementation Details 32

Figure 4.5: Example of how the document analyst recognizes an image with a caption via
type matching of composite elements

Document Pre-processing and Noise Removal

Before proceeding with the analysis and extraction, we pre-process documents in order to

identify non-supported formats and malformed documents. Furthermore, pre-processing

is needed to recognize the minimum and maximum font size, metadata, number of pages,

number of images and other metadata.

The pre-processing phase aims to avoid the following problems:

• Incomprehensible character encoding and malformed documents : Some

documents can be corrupted or may contain unknown charsets. In addition, some

documents can be corrupted.

• Document as images: Some formats (mostly PDF) are used to store images.

Since we do not support Optical Character Recognition (OCR), our implementation

avoids this category of documents because is not possible to recognize elements of

interest.

• Documents with content protection: Some formats allow the user to protect

document contents. We discard protected documents since it is not possible to have

full access to the document content.

4.3. System Architecture and Implementation Details 33

4.3.3 Shadow Builder Module

Shadows are created as well formed XML files (Item 3 of Step B of Figure). In order to do

this, we adopted the JDOM14, DOM4J15 and Xerces16Java APIs to parse and manipulate

and serialize XML files.

Figure 4.6 gives an overview of the Shadow Builder Module and how it works. Basically,

the Shadow Builder receives a call that contains a piece of the given schema and the

corresponding instance of content/structure previously extracted from the documents by

the extractor module (DDEx).

Figure 4.6: Overview of the shadow builder module

Inside the Shadow Builder Module itself (Item 2 of Figure 4.6), there are a mapper and

a serializer unit. The mapper receives instances from the Document Analyst, implemented

inside DDEx, as a descriptive call that contains: (i) a tree that preserves the relationship

between the elements; and (ii) information about and the instance itself.

After receiving a new call corresponding to a new instance found, the mapper instanti-

ates a corresponding element (and its properties) in a tree allocated in memory, preserving

its hierarchical relationships. This new element (and its related elements) follows the user

definitions on the shadow schema. For instance, if users define that the Dublin Core

Term author should be used to refer to the author of a document, the mapper defines this

on adding this element to the tree. Alternatively, as discussed before, elements also can

be stored apart from the shadow itself. After the end of the process, the serializer will

materialize the XML document and store it.

14http://www.jdom.org
15http://dom4j.sourceforge.net/
16http://xerces.apache.org/xerces-j/

4.3. System Architecture and Implementation Details 34

4.3.4 Shadow Production and Storage

The Shadow Builder constructs the shadow according to a schema. For each element

instance/URI forwarded by the extractor (see Figure 4.1), it builds an XML expression

that represents an instance or URI of the instance.

For instance, if the shadow schema specifies that sections in a document should be

mapped as the term section from the DocBook [52] standard, when a call foundSection

is invoked, it is instantiated in the shadow as the DocBook element section. This is not a

purely sequential process, because of the hierarchical structure of a schema (e.g., a section

can contain a table that can contain a figure).

Table 4.1 shows the set of metadata standards and ontologies already supported by

our implementation. Its first line, for instance, indicates that the Docbook standard is

supported – with the prefix docbook – in our implementation.

Figure 4.7: Piece of a document and the corresponding shadow

Figure 4.7 presents a piece of a document and the corresponding shadow. This example

shows that the schema supports types from distinct standards. The code shows that the

shadow adopts the docbook standard to describe paragraphs within a section (first arrow),

caption within the description of a figure (third arrow), table caption and table (fourth

and fifth arrows) and a media element (second arrow). It also adopts others standards,

such as DCMI Type Vocabulary17 standard from Dublin Core and the ORE standard. As

part of the image descriptor, there is a link to a local repository in to which the image was

imported, so that can afterwards be processed apart from the document. Each element

17http://dublincore.org/documents/dcmi-type-vocabulary/

4.3. System Architecture and Implementation Details 35

Prefix Namespace URI Description Role in the Shadow

docbook http://docbook.org/ns/docbook

Semantic markup
language for
representing
documents

Presentation-neutral
solution that captures

and represents the
logical structure and

content of a document

dc http://purl.org/dc/elements/1.1/

Set of general
metadata terms,
used to describe

resources

Subset of the
adopted terms

used to represent
documents’ metadata

dcterms http://purl.org/dc/terms/
Additional and
refined Dublin

Core terms

Another subset
of adopted terms
used to represent

documents’ metadata

ore http://www.o . . . s.org/ore/terms/

A standard for
description and

exchange of
aggregations and
relations between

resources

Used to represent
relations between

elements of a
document

rdfs http://www.w3.o . . . rdf-schema#
RDF Schema
vocabulary

Used for
typing and general
element labelling

adobe-xmp http://ns.adobe.com/xap/1.0/
Set of metadata
terms proposed

by Adobe

Another set
of adopted

metadata terms

Table 4.1: Comparison between the SdR approach and the approaches described in Sec-
tion 2.2

in the shadow receives an id assigned by DDEx, which will uniquely identify it within

the Shadow Base – e.g. arrow 5 points to a table uniquely identified as “m5n67 ” via

the identifier Dublin Core term. Furthermore, while some elements are referred to by

links within the shadow (e.g., the table), others are copied into the shadow (e.g, image

caption).

As pointed out by [54], finding good structures to represent documents is complicated

because of the high dimensionality of documents. Here, since shadows are themselves

documents, we did not solve the dimensionality problem. However, since they describe a

document according to a given set of elements of interest defined by users, the dimensions

are more controlled, and thus more manageable.

4.4. Conclusions 36

4.4 Conclusions

This chapter presented the a software architecture to produce shadows and store them.

This is an instantiation of the process presented in Chapter 3.

This chapter also presented more low-level details on each step of the proposed archi-

tecture, discussing adopted technologies and implementation details.

Chapter 5

Case Study

This chapter presents a case study where shadows are used to pose queries over the content

and structure of documents, and to indirectly annotate documents. This case study is

divided in three parts, and goes from the construction of a shadow base, concerning

documents related to the biodiversity domain, to the use of shadows to produce semantic

annotations for documents.

Section 5.1 corresponds to the first part of the case study, and details our effort to

create a shadow base (using the implementation presented in Chapter 4). Section 5.2

corresponds to the second part of the case study, and discusses how we used shadows

to pose unstructured and structured database queries against a document’s content and

structure. The third part of the case study is presented in Section 5.3, discussing details

about our strategy to link (via semantic annotations) shadows to linked data resources.

Finally, Section 5.4 presents conclusions.

5.1 Part I: Construction of a Shadow Base

Constructing a Shadow Base of Documents Concerning Biodiversity Studies

Our case study concerns papers in Portuguese and English for biodiversity studies. To

build a document collection, we implemented a Python crawler to automatically get docu-

ments from Google Scholar12, constructing a collection of approximately 3200 documents.

In addition, we also included master dissertations, PhD theses and several papers pub-

lished by members of our lab, totaling 3300 documents. The documents are uniquely

identified and stored in a repository, occupying 1.9 GBytes.

1http://scholar.google.com
2Keywords used on the search where: Biodiversity, Biology, Biodiversidade, Biologia

37

http://scholar.google.com

5.1. Part I: Construction of a Shadow Base 38

From this document collection (textual documents in .doc and .docx, .pdf, .odt for-

mats), our implementation generated 3104 shadows. 196 documents could not be pro-

cessed due to corrupted files, document as images and unknown file formats.

Documents of this collection had 2053 images extracted, which were stored in a reposi-

tory reachable in the web and uniquely identified (URL). Shadows were identified with the

same name of the corresponding document, and also became available on the Internet, thus

having an URI – for instance, the shadow in http://proj.lis.ic.unicamp.br/ssea/database/

shadows/64.pdf.xml is a description of the document in http://proj.lis.ic.unicamp.br/ssea/

database/documents/64.pdf according to the schema adopted3.

Part 1

<?xml version="1.0" encoding="utf-8" ?>

<schematerms:shadowschema xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:stextdoc="http://purl.org/shadow/textdoc"

xmlns:schematerms="http://purl.org/shadow/schema"

xmlns:ddex="http://purl.org/ddex"

xmlns:docbook="http://docbook.org/ns/docbook">

<schematerms:targetlist schematerms:instancetype="local">

<ddex:author /> <ddex:title /> <ddex:keywords />

<ddex:imagecount /> <ddex:abstract /> <ddex:section />

<ddex:image /> <ddex:caption /> <ddex:table />

<ddex:references />

</schematerms:targetlist>

Part 2

<schematerms:shadowstructure>

<ddex:metadata>

<ddex:author /> <ddex:title /> <ddex:keywords /> <ddex:imagecount /> <ddex:wordcount />

</ddex:metadata>

<ddex:abstract />

<ddex:chapter flag="optional">

<ddex:section>

<ddex:paragraph />

<ddex:table flag="optional"> <ddex:caption /> </ddex:table>

<ddex:image flag="optional"> <ddex:caption /> </ddex:image>

</ddex:section>

</ddex:chapter>

</schematerms:shadowstructure>

Part 3

<schematerms:associationlist>

<!--Using term TITLE from Dublin Core for title -->

<schematerms:elementassociation>

<schematerms:elementsource> <ddex:title /> </schematerms:elementsource>

<schematerms:elementmapto> <dc:title /> </schematerms:elementmapto>

</schematerms:elementassociation>

<!--Using term SECTION from DockBook for sections -->

<schematerms:elementassociation>

<schematerms:elementsource> <ddex:section /> </schematerms:elementsource>

<schematerms:elementmapto> <docbook:section /> </schematerms:elementmapto>

</schematerms:elementassociation>

</schematerms:associationlist>

...

Figure 5.1: Shadow schema (XML) adopted in the case study

Figure 5.1 presents an excerpt (written in XML) of the shadow schema that guided the

3The decision to store both shadows and documents in Web repositories, thus giving them a valid
URI, was based on the the rules of linked data, as presented in Section 2.4.2

5.2. Part II: Querying the Shadow Base 39

construction of the shadow base. Highlighted Part 1 of the figure defines the adopted

namespaces and elements of interest. Part 2 of the figure defines the hierarchical relation-

ship between the elements of the interest – e.g., a section can contain a table or an image,

and both tables and images must contain a caption – those relationship can be better

visualized via Figure 5.2. Part 3 of the figure defines how elements should appear in the

generated shadow – e.g., it defines that the title of the document should be persisted

usind the term title from the dublin core, and sections should appear in the shadow as

the term section from DocBook.

On top of Figure 5.2 a shadow schema is abstracted, listing the element types that we

are interested in and their hierarchical relationships – for instance, we define that tables

should have a caption. The bottom part of Figure 5.2 shows the terminology adopted

– as defined in the XML of part 3 of Figure 5.1, the title of the document should be

instantiated as an element title from the Dublin Core metadata initiative [11], and a

section should be persisted with the term section from DocBook [51].

The shadow base generated according to this schema was stored and loaded in the

BaseX XML DBMS. It occupies 502 MB. The shadows were created in 26 minutes in a

computer with 16 processors and 32 GB of RAM, using a 64bit linux distribution.

5.2 Part II: Querying the Shadow Base

We formulated queries in Xquery [12] against the BaseX shadow base (approximately 3000

shadows stored), following end-user (biologist) requirements. We also executed queries

that were not relevant to biologists, but which show the potential of our proposal (as

compared to IR approaches, or document management proposals).

Figure 5.3 is an example of a query result that can be used to analyze the document

collection via the shadow base, though it is not a query requested by our end-users. It

shows the shadow base (as displayed by BaseX) in terms of documents that contain a

number X of images.

The following code is the XQuery that produced the result presented in Figure 5.3.

Both lines 15 and 16 concern the definition of the namespaces that will be used on the

query. Line 18 is the query itself, a XPath expression that points to an element of the

shadow that contains the number of images within a document.

16 declare namespace docshadow = "http://purl.org/documentshadow";

17 declare namespace textshadow = "http://purl.org/textshadow";

18

19 /docshadow:shadow/docshadow:metadata[textshadow:imagecount>X]

5.2. Part II: Querying the Shadow Base 40

Figure 5.2: Abstraction of the shadow schema used in the case study

Figure 5.3a shows that a large number of shadows (and therefore documents) contain

images, whereas 5.3d shows that very few documents contain more than 100 images.

Examples of the latter include a technical report on analysis of vegetation cover in

agricultural regions in Brazil, using satellite images, a book chapter on Computational

Biology and a paper discussing parasites that compete for host species. This is an example

that shows that the shadow base can be queried to partition the document collection

according to several criteria - and this criterion (number of images), in particular, is not

viable in other approaches.

Examples of queries that can be processed by IR techniques as well include:

Q1 Documents whose authors include researcher called ”A” and whose title contains the

word ”biodiversity”.

5.2. Part II: Querying the Shadow Base 41

Figure 5.3: Fetched shadows from a query “documents with x images”

Q2 Documents containing keywords ”C” and ”D”.

For instance, query Q1 returned 17 shadows (corresponding to .pdf and .doc files) for

“A”= “Marcelo” and 8 shadows for “A” = “Vera”. Query Q2 returned 33 shadows for

“C” = “monitoring” and “D” = “report”.

Examples of queries that cannot be processed by other approaches include:

Q3 Documents with more than 10 pages, at least 5 images, and one section called ”Case

Study”.

Q4 Documents without images or tables.

Queries Q3 and Q4 above combine structure and content. They are not useful in

terms of biodiversity research, but are included to show the versatility of shadow

management.

Q5 Documents that contain one or more images of species ”Glomerella tucumanensis”.

This query is posed against image captions, which are part of the schema and

associated with images under the shadow image element.

5.3. Part III: Annotating Documents via Shadows 42

Q6 Documents that contain an image of ”Glomerella tucumanensis” followed by a table

that concerns the same species.

This query is posed against shadow image and table captions.

5.3 Part III: Annotating Documents via Shadows

As presented before, using a database language for XML queries, like XQuery, we were

capable of (indirectly) posing queries about structure and content of a collection of doc-

uments. Nevertheless, queries on the shadow base are limited to the data extracted from

the documents.

Since a shadow is an interoperable document descriptor, it can be easily used with

different purposes. In our case study, we decided to use shadows to indirectly annotate

documents, creating links between elements of a shadow and ontologies and other semantic

Web resources – producing semantic annotations.

To annotate shadows, we adopted an RDF-based schema for describing annotations

and an established XML reference standard to address shadow elements. There are several

standards/languages to refer and link XML documents, such as shadows. Those W3C

standards – such as XPath, XLink and XPointer [55] – provide a set of tools that allows

the addressing of XML documents and their fragments. XPath models an XML document

as a tree of nodes and provides a URL path notation for element addressing, while XLink

allows elements to be inserted into the XML documents to create and describe links

between resources. Finally, XPointer defines a language to be used to locate a fragment

via a URI, allowing a URI reference to locate some resource.

5.3.1 Producing Semantic Annotations

Our annotation strategy is based on the Linked Data paradigm. It follows the simple

strategy of considering that two entities are the same if they refer to the same ontology

term – i.e., we do not look for more sophisticated IR techniques. The goal is to establish

a basis for fact finding and linking documents and concepts via shadows, assuming that

the two entities – the element instance in a document, and the concept defined in the

ontology – are semantically related. This is a strong assumption (e.g., see [22]), but it

is the first step towards semantic entity linkage in a context of otherwise heterogeneous

unrelated data sources.

For the purpose of this experiment, we annotated shadows manually. Future devel-

opments will incorporate our work on semi-automatic annotation processes, guided by

5.3. Part III: Annotating Documents via Shadows 43

workflows [33]. Annotations were inserted in a Virtuoso4 database, that supports RDF

triples and SPARQL queries5. In more detail, our annotations are RDF triples that link

a shadow element to concepts in the LOD.

To illustrate how elements of a document can be indirectly linked to concepts in the

LOD (presented in Section 2.4.2), consider Figure 5.4. Left side of the figure shows a

specific part of a document that contains an image of a fungus (Colletotrichum falcatum,

also named as Glomerella tucumanensis). Arrow 1 points to a specific element of the

XML that represents the figure, uniquely identified as “erg3423”. Arrow 2 of the figure

is pointing to another element (within the element pointed by arrow 1) that corresponds

to the caption of the figure within the document (left side).

Figure 5.4: A captioned image within a document (left part) and a corresponding shadow
XML code (right part)

The piece of SPARQL code in Figure 5.5 shows how the specific part of the document

(shown in the left side of Figure 5.4) is (indirectly) linked with the concept of the fungus

Glomerella tucumanensis in the LOD. The idea is link the specific element of the shadow

(identified as dc:identifier=“erg3423” in the right side of Figure 5.4) to concepts in the

LOD (specifically, with the concept of the Glomerella tucumanensis in the DBPedia).

The link between the shadow and the concept is performed by an insertion of an RDF

triple in the Virtuoso database, and is structured as

4http://virtuoso.openlinksw.com
5Our database is open, and a SPARQL service can be found at http://proj.lis.ic.unicamp.br/

sparql

http://proj.lis.ic.unicamp.br/sparql
http://proj.lis.ic.unicamp.br/sparql

5.3. Part III: Annotating Documents via Shadows 44

INSERT into graph (of the annotation database)

resource --- URI

property --- depiction

value --- the element (i.e., image in shadow 64.pdf.xml)

and links (via foaf:depiction of Figure 5.5) the DBPedia URI for ”Glomerella tucuma-

nensis” to the specific shadow in the Shadow Base. More specifically, this link is associated

with an element identified within this shadow by ”erg3423” – see last line of the code in

Figure 5.5. We recall that this identifier is artificially generated by DDEx to support the

management of shadow elements within the Shadow Base.

PREFIX foaf: <foaf:>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT IN GRAPH

<http://proj.lis.ic.unicamp.br/annotations/>

{

<http://dbpedia.org/resource/Glomerella_tucumanensis>

<foaf:depiction>

<http://proj.lis.ic.unicamp.br/ssea/database/shadows/64.pdf.xml#

xpointer(dc:identifier(’erg3423’))>

}

Figure 5.5: SPARQL code to create a nannotation

5.3.2 Querying Annotations

The next piece of code in Figure 5.6 shows a query for URIs and values associated with

the DBPedia concept ”Glomerella tucumanensis”. This query is posed against the local

Virtuoso instance, which contains the annotations and data imported from DBPedia,

5.3. Part III: Annotating Documents via Shadows 45

Geonames and Geospecies. Here,the result is very different from just using XQuery to

query shadows. The first difference, of course, is that the query in XQuery retrieved URIs

of shadows, and this query retrieves URIs of shadows and of other concepts.

SELECT ?property, ?value

WHERE {

<http://dbpedia.org/resource/Glomerella_tucumanensis>

?property

?value

}

Figure 5.6: SPARQL code for querying the Virtuoso database

The second difference is semantically more interesting. While the (Xquery) query Q6

on the Shadow Base in Section 5.2 only returned shadows of documents that had images of

this species, resulting in 3 shadows, the (SPARQL) query of Figure 5.6 on annotations plus

LOD data returned 46 URIs, of which 3 point to the same shadows, and one to another

shadow, not identified by the Shadow Base query. The reason for this discrepancy is the

following. ”Glomerella tucumanensis” has several scientific synonyms - one of them being

”Colletotrichum falcatum”. Thus, the SPARQL query on annotations not only returned

the shadows retrieved using XQuery; it also returned references to a shadow (and thus a

document) that had no mention of ”Glomerella”, but described it under another name.

Table 5.1 shows an excerpt of the 46 answers to the SPARQL query shown in Figure 5.6

– the URIs of all resources related to ”Glomerella tucumanensis”. Not only does it return

the document that have been annotated by the code in Figure 5.5 in its 6th row, but also

returns links to several other DBPedia information and resources.

In particular, in biodiversity studies, experts need to correlate papers in several sci-

entific domains (e.g., climatology, phenology, pedology), For instance, continuing the

example related to the Figure 5.4, ”Colletotrichum falcatum” is a fungus that attacks

sugar cane and is widespread in subtropical regions, being also called ”red rot of sugar

cane”. Via annotations, experts are able to pose queries such as ”documents that refer

to plant diseases in subtropical regions” or ”documents that contain images of red rot of

sugar cane”. This is an example of how annotations using LOD can significantly enhance

5.3. Part III: Annotating Documents via Shadows 46

Property Value

rdf:type dbpedia:Species
rdf:type dbpedia:Fungus
rdf:type dbpedia:Eukaryote
rdfs:label ”Glomerella tucumanensis”@en
rdfs:comment ”Glomerella tucumanensis is a plant pathogen.”@en
foaf:name ”Glomerella tucumanensis”@en
dc:subject http://dbpedia.org/resource/Category:Plant pathogens and

diseases
dc:subject http://dbpedia.org/resource/Category:Sordariomycetes
foaf:page http://en.wikipedia.org/wiki/Glomerella tucumanensis
foaf:depiction http://proj.lis.ic.unicamp.br/ssea/database/shadows/

64.pdf.xml#xpointer(dc:identifier(’erg3423’))
dbpedia:kingdom http://dbpedia.org/resource/Fungus
dbpedia:phylum http://dbpedia.org/resource/Ascomycota
dbpedia:order http://dbpedia.org/resource/Incertae sedis
dbpedia:class http://dbpedia.org/resource/Sordariomycetes
dbpedia:class http://dbpedia.org/resource/Sordariomycetidae
dbpedia:abstract ”Glomerella tucumanensis is a plant pathogen.”@en
dbpedia:synonym ”Colletotrichum falcatum Went, (1893)”@en
dbpedia:synonym ”Colletotrichum metake Sacc., (1908)”@en
dbpedia:synonym ”Physalospora tucumanensis Speg., (1896)”@en
dbpedia:family http://dbpedia.org/resource/Glomerellaceae
dbpedia:genus http://dbpedia.org/resource/Colletotrichum

Table 5.1: Fetched RDF triples from a query to return all triples related to the “Glomerella
tucumanensis” fungus

query possibilities.

5.3.3 Using Shadows to Extract Geo-knowledge

There is extensive research on extracting geographical knowledge from documents, mostly

based on text analysis on documents and textual fields in databases. Basically, those pa-

pers try to find geographic references (e.g., matching place names according to a dictio-

nary), and subsequently correlate the text with specific regions, points etc. [39, 46]. This

often implies in issues of geo-referencing, token indexing and document corpus analysis

algorithms (e.g., using gazeteers [36] or geographical databases [17]). Furthermore, there

are problems related to the heterogeneity of formats, since most of the solutions focus on

interoperable formats (e.g., HTML) or some specific format (e.g., PDF).

5.3. Part III: Annotating Documents via Shadows 47

We decided go beyond information about species and extract geographic knowledge

from non-geographic elements of documents, via linked data. Rather than analyzing

the text directly to extract geo-knowledge, the basis of our strategy is to extract this

knowledge from semantically annotated shadows.

Instead of restricting ourselves to geographical data, we also process data indirectly

associated with geographic references (e.g., images can be connected to their meaning on

the semantic web, the authors of a paper can be connected to their birthplaces, conference

proceedings can be connected with where the conference took place or the address of the

publishers). The middle and right parts of Figure 5.7 present an abstraction of the

connection between a shadow element (addressable via URI) and its meaning in a specific

data set of the Linking Open Data Project (LOD).

Figure 5.7: Abstraction of the relation between a shadow, the corresponding document
and the link between an element and an external data set

For instance, consider a paper that contains an image of an animal. The image label

identifies the species name. Using the species name, we can find its URI in the LOD, and

therefore additional geo-information about that species which are dispersed over different

data sets.

The paper’s author can also be linked similarly, and so on. Hence, the shadow can

now be used to answer queries such as “what researchers have written papers on animals

that are found within X kilometers of their work place?”, or “group papers by geographic

regions of where the species described can be found”, or “given a document, show where

mentioned species can be found”, or even “which documents mention species that appear

in a polygon P?”. Figure 5.8 shows a Web-based prototype6 that allows a user to navigate

over the geographical relationships between documents and other resources in the LOD.

6This prototype is not fully implemented yet

5.4. Conclusions 48

Figure 5.8: Screenshot of an initial prototype for visualization of the geo-knowledge ex-
tracted from the connection between document and LOD datasets

5.4 Conclusions

This chapter presented a case study that aims to validate the SdR strategy. The case

study is divided in three parts, and discusses the generation of shadows for a collection of

documents, using the implementation presented in Chapter 4. Also, this chapter presented

details about how shadows can be used to indirectly query the collection and to annotate

its documents.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation investigates problems of handling heterogeneous documents in the Web.

It proposes the Shadow-driven Representation (SdR), a novel strategy to represent doc-

uments independently of format, preserving the original file and handling large volumes

of documents. It adopts the notion of “descriptor”, borrowed from the image database

literature, to represent a document’s structure and content according to the interests of

a groups of users.

A shadow is an interoperable document descriptor that summarizes key aspects and

elements of a document, preserving their structural relationships. These elements (e.g.,

sections, tables, embedded multimedia artifacts, references) are defined by users (e.g.,

research groups may have different interests), and thus one document may have many

shadows. Once a set of elements of interest is defined, shadows are instantiated based in

this set.

Unlike other approaches in the literature that restrict document description to text,

shadows consider other kinds of elements within a document, such as tables or images,

thereby supporting a wide variety of operations and correlations. Though we have imple-

mented shadows as XML documents stored in a database (our shadow base), this is just

a possible materialization of the concept, which transfers document querying tasks to the

DBMS.

The SdR is an approach to represent information about a document. The main ad-

vantages of this approach are:

• shadows isolate domain-relevant elements of a document from its format;

• shadows follow interoperability standards, enabling their exchange and machine

consumption;

49

6.2. Future Work 50

• like image descriptors, shadows concerning different information can be combined,

implying in scalability;

• shadows are XML documents, and thus can be processed under IR techniques or

queried via XML query languages or annotated or used for other purposes.

To validate the strategy, we implemented a working prototype to produce shadow for

documents in .doc/.docx, .odt, .pdf formats. To show the flexibility and some possibilities

of the use of shadows, we developed a case study on a specific domain – biodiversity. In

the case study, shadows are used to produce semantic annotations between documents

and semantic information (LOD).

6.2 Future Work

Since shadows are an interoperable “descriptor” of a document, they can be adopted as

an approach to solve other problems related to documents. For instance, in the case

study discussed in Chapter 5, we concentrate in problems related to documents, in two

directions – query documents and their internal elements, annotate documents and link

them to other resources.

There are many extensions possible for this work, for instance:

• Defining recursive descriptors for internal elements within a document:

A document can contains several internal elements, and each element can contain

its own structure and implicit information. Since a shadow acts like a descriptor

of the entire document, the shadow should support the composition of specialized

descriptors – such as image descriptors, descriptors that describe a table etc.

• Clustering documents according to their hierarchical structure: Internally,

a shadow contains a representation of the internal elements of a document. This

representation preserves the hierarchical relationship between the elements. Thus,

the shadow contains a “virtual” representation of the hierarchical relationship of the

elements. This virtual representation of the structure can be used as a criterion for

document clusterization and classification – e.g., all PhD theses, even in different

languages may have a common structure.

• Representing elements of documents as RDF triples: In the implementation

presented in this dissertation, shadows are serialized as XML documents. Another

possible strategy to construct and serialize shadows is the construction of a graph

of RDF triples that represents both structure and instances of elements within a

6.2. Future Work 51

document. With this strategy, semantic web systems could transparently process

the content and/or the structure of documents.

• Defining the shadow schema in an ontology: In the implementation discussed

in this dissertation, a shadow schema drives the process of extraction of elements

and instantiation of shadows. The current implementation has the extractable types

of elements hardwired in the code. Another approach to drive the extraction and

production process is the use of ontologies. Basically, an “ontology schema” should

contain specialized directives in order to recognize specific types of elements in

different document formats, according to user needs. This ontology could drive the

extractor, decoupling the code from the element definition itself.

• Using shadows for document versioning and derivation discovery: Many

document production tools are not conceived to produce files with explicit structure

and interoperable formats, strongly coupling the content to the file structure and

software representation. This hampers processes like versioning and discovery of

correlations between different formats. Since a shadow isolates the content from the

format, shadows can be used for solving these problems.

• Using shadows as input for NLP algorithms: There are several papers that

process documents with NLP techniques with different purposes,focusing textual

features. Usually, systems that go beyond textual features concentrate in specific

formats, like HTML. As an alternative strategy, NLP algorithms could use shadows

as input, also considering information about the structure of the document – for

instance, the label of a section can have more relevance on the processing than a

caption of an image.

• Building drivers to store shadow in other DBMS: DDEx extracts elements

from documents, requiring different drivers for specific formats. An extension to the

architecture is to develop drivers that will store shadow in distinct DBMS, which

will allow a variety of shadow access and query mechanisms.

Bibliography

[1] Y. Alemu, J.-b. Koh, M. Ikram, and D.-K. Kim. Image Retrieval in Multimedia

Databases: A Survey. 2009 Fifth International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, pages 681–689, Sept. 2009.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A

nucleus for a web of open data. In The Semantic Web, volume 4825 of Lecture Notes

in Computer Science, pages 722–735. Springer Berlin / Heidelberg, 2007.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

284(5):28–37, May 2001.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.

Semantic Web Inf. Syst., 5(3):1–22, 2009.

[5] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-

mann. Dbpedia - a crystallization point for the web of data. Web Semantics: Science,

Services and Agents on the World Wide Web, 7(3):154 – 165, 2009.

[6] P. Cano. Automatic sound annotation. In In IEEE workshop on Machine Learning

for Signal Processing, pages 391–400, 2004.

[7] P. Chan, H. Yu, W. Ng, and D. Yeung. A novel method to reduce redundancy in

adaptive threshold clustering key frame extraction systems. In Machine Learning

and Cybernetics (ICMLC), 2011 International Conference on, volume 4, pages 1637

–1642, july 2011.

[8] M. V. Cundiff. An introduction to the Metadata Encoding and Transmission Stan-

dard (METS). Library Hi Tech, 22(1):52–64, 2004.

[9] H. Cunningham. GATE, a general architecture for text engineering. Computers and

the Humanities, 36(2):223–254, 2002.

[10] R. da Silva Torres and A. Falcão. Content-based image retrieval: Theory and appli-

cations. Revista de Informática Teórica e Aplicada, 2(13):161–185, 2006.

52

BIBLIOGRAPHY 53

[11] DCMI. Dublin core metadata initiative, Aug. 2010. http://dublincore.org/

metadata-basics/, accessed on 01/2011.

[12] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language

for xml. Computer Networks, 31(11–16):1155 – 1169, 1999.

[13] E. Duval, W. Hodgins, S. Sutton, and S. L. Weibel. Metadata Principles and Prac-

ticalities. D-Lib Magazine, 8(4):1–10, Apr. 2002.

[14] J. Euzenat. Eight questions about semantic web annotations. IEEE Intelligent S.,

17(2):55–62, 2002.

[15] R. Freitas and R. Torres. An ontology-based tool for image retrieval and semi-

automatic annotation (in portuguese). 2005.

[16] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns. Addison-

Wesley Longman Publishing Co., Inc., Boston, USA, 1995.

[17] L. C. Gomes and C. B. Medeiros. Ecologically-aware queries for biodiversity research.

In Proceedings GeoInfo - Brazilian Geoinformatics Symposium. INPE - SBC, 2007.

[18] J. Greenberg. Understanding Metadata and Metadata Schemes. Cataloging & Clas-

sification Quarterly, 40(3):17–36, Sept. 2005.

[19] C. Grün, S. Gath, A. Holupirek, and M. H. Scholl. Xquery full text implementation

in basex. In Proceedings of the 6th International XML Database Symposium on

Database and XML Technologies, XSym ’09, pages 114–128, Berlin, Heidelberg, 2009.

Springer-Verlag.

[20] C. Grün, A. Holupirek, and M. H. Scholl. Visually exploring and querying xml with

basex. In BTW, pages 629–632, 2007.

[21] T. Grust, M. Mayr, and J. Rittinger. Let SQL Drive the XQuery Workhorse. In

Proc. EDBT, pages 147–158, 2010.

[22] X. Han, L. Sun, and J. Zhao. Collective Entity Linking in Web Text: A Graph-Based

Method. In Proc SIGIR, pages 765–774, 2011.

[23] B. Haslhofer. A survey of techniques for achieving metadata interoperability. ACM

Computing Surveys (CSUR), 42(2):1–37, Feb. 2010.

[24] T. Hey, S. Tansley, and K. M. Tolle, editors. The Fourth Paradigm: Data-Intensive

Scientific Discovery. Microsoft Research, 2009.

http://dublincore.org/metadata-basics/
http://dublincore.org/metadata-basics/

BIBLIOGRAPHY 54

[25] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank. A survey on visual content-based

video indexing and retrieval. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, 41(6):797 –819, nov. 2011.

[26] E. Ioannou, W. Nejdl, C. NiederZee, and Y. Velegrakis. OntheFly Entity Aware

Query Processing in the Presence of Linkage. In Proc. VLDB, pages 279–287, 2010.

[27] J. Kahan. Annotea: an open RDF infrastructure for shared Web annotations. Com-

puter Networks, 39(5):589–608, Aug. 2002.

[28] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff. Semantic annota-

tion, indexing, and retrieval. Web Semantics: Science, Services and Agents on the

World Wide Web, 2(1):49 – 79, 2004.

[29] M. Koivunen, R. Swick, and E. Prud’hommeaux. Annotea shared bookmarks. In

Proc. of the KCAP 2003 workshop on knowledge markup and semantic annotation,

http://www. w3. org/2001/Annotea/Papers/KCAP03/annoteabm. html, pages 25–

26. Citeseer, 2003.

[30] H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Amsaleg. Scalability of local

image descriptors: a comparative study. In MULTIMEDIA ’06, pages 589–598, NY,

USA, 2006. ACM.

[31] M. Lesaffre, K. Tanghe, G. Martens, D. Moelants, M. Leman, B. D. Baets, H. D.

Meyer, and J.-P. Martens. The mami query-by-voice experiment: Collecting and

annotating vocal queries for music information retrieval. In In: Proceedings of the

International Conference on Music Information Retrieval, pages 26–30, 2003.

[32] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma. A survey of content-based image retrieval

with high-level semantics. Pattern Recognition, 40(1):262 – 282, 2007.

[33] C. Macário, S. Sousa, and C. B. Medeiros. Annotating Geospatial Data based on its

Semantics. In 17th ACM SIGSPATIAL Conference, pages 81–90, 2009.

[34] S. Marinai, B. Miotti, and G. Soda. Digital Libraries and Document Image Retrieval

Techniques: A Survey. Learning Structure and Schemas from Documents, pages

181–204, 2011.

[35] M. S. Mota, J. S. C. Longo, D. C. Cugler, and C. B. Medeiros. Using linked data to

extract geo-knowledge. In XII Brazilian Symposium on GeoInformatics - GeoInfo,

November 2011.

BIBLIOGRAPHY 55

[36] D. Nadeau, P. Turney, and S. Matwin. Unsupervised named-entity recognition: Gen-

erating gazetteers and resolving ambiguity. In Advances in Artificial Intelligence,

volume 4013 of Lecture Notes in Computer Science, pages 266–277. 2006.

[37] A. Nandy, M. Harle, and S. Basak. Mathematical descriptors of DNA sequences:

development and applications. Arkivoc, 9(ix):211–238, 2006.

[38] NISO. Understanding metadata. National Information Standards Organization, 2004.

ISBN 1-880124-62-9.

[39] R. Odon de Alencar, C. A. Davis, Jr., and M. A. Gonçalves. Geographical classifica-

tion of documents using evidence from wikipedia. In Proceedings of the 6th Workshop

on Geographic Information Retrieval, GIR ’10, pages 12:1–12:8. ACM, 2010.

[40] E. Oren, K. H. Moller, S. Scerri, S. Handschuh, and M. Sintek. What are semantic

annotations?? 2006. Technical report, DERI Galway.

[41] N. Patil, D. Toshniwal, and K. Garg. Species identification based on approximate

matching. In Proceedings of the Fourth Annual ACM Bangalore Conference, COM-

PUTE ’11, pages 30:1–30:4, New York, NY, USA, 2011. ACM.

[42] L. Ren, Z. Qu, W. Niu, C. Niu, and Y. Cao. Key frame extraction based on infor-

mation entropy and edge matching rate. In Future Computer and Communication

(ICFCC), 2010 2nd International Conference on, volume 3, pages V3–91 –V3–94,

may 2010.

[43] A. Santanchè and C. B. Medeiros. A Component Model and Infrastructure for a

Fluid Web. IEEE Transactions on Knowledge and Data Engineering, 19(2):324–341,

February 2007.

[44] A. Santanchè, M. Mota, D. Costa, N. Oliveira, and C. O. Dalforno. Componere:

component-based in web authoring. In Proceedings of the XV Brazilian Symposium

on Multimedia and the Web, WebMedia ’09, pages 12:1–12:8, New York, NY, USA,

2009. ACM.

[45] N. C. Simões, N. J. Leite, and B. Marcotegui. Automatic key-frame extraction from

broadcast soccer videos. In VISAPP (2), pages 216–223, 2009.

[46] J. Strötgen, M. Gertz, and P. Popov. Extraction and exploration of spatio-temporal

information in documents. In Proceedings of the 6th Workshop on Geographic Infor-

mation Retrieval, GIR ’10, pages 16:1–16:8, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 56

[47] C.-W. Su, H.-Y. Liao, H.-R. Tyan, C.-W. Lin, D.-Y. Chen, and K.-C. Fan. Motion

flow-based video retrieval. Multimedia, IEEE Transactions on, 9(6):1193 –1201, oct.

2007.

[48] A. Termehchy and M. Winslett. Keyword Search for Data-Centric XML Collections

with Long Text Fields. In Proc. EDBT, 2010.

[49] F. Valio, H. Pedrini, and N. Leite. Fast rotation-invariant video caption detection

based on visual rhythm. In C. San Martin and S.-W. Kim, editors, Progress in Pattern

Recognition, Image Analysis, Computer Vision, and Applications, volume 7042 of

Lecture Notes in Computer Science, pages 157–164. Springer Berlin / Heidelberg,

2011.

[50] J. van Ossenbruggen, F. N., and L. Hardman. That Obscure Object of Desire:

Multimedia Metadata on the Web, Part 1. IEEE MultiMedia, 11(4):38–48, 2004.

[51] L. M. N. Walsh. DocBook: The Definitive Guide. O’Reilly & Associates, 1999.

[52] N. Walsh and L. Muellner. DocBook: The Definitive Guide. O’Reilly, 1999.

[53] D. Wang and T. Li. Document Update Summarization Using Incremental Hierarchi-

cal Clustering. In Proc. CIKM, pages 279–287, 2010.

[54] L. Weng, Z. Li, R. Cai, Y. Zhang, Y. Zhou, L. T. Yang, and L. Zhang. Query by

document via a decomposition-based two-level retrieval approach. In Proceedings

of the 34th international ACM SIGIR conference on Research and development in

Information Retrieval, SIGIR ’11, pages 505–514, New York, NY, USA, 2011. ACM.

[55] E. Wilde and D. Lowe. Xpath, Xlink, Xpointer, and Xml: A Practical Guide to

Web Hyperlinking and Transclusion. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2002.

[56] D. Wimalasuriya and D. Dou. Components for Information Extraction: Ontology-

Based Information Extractors and Generic Platforms. In Proc. CIKM, pages 9–18,

2010.

[57] S. H. Yeganeh, O. Hassanzadeh, and R. J. Miller. Linking semistructured data on the

web. In Proceedings of the 14th International Workshop on the Web and Databases,

2011.

[58] L. Zhang, Y. Zhang, and Q. Xing. Filtering semi-structured documents based on

faceted feedback. In Proceedings of the 34th international ACM SIGIR conference

BIBLIOGRAPHY 57

on Research and development in Information, SIGIR ’11, pages 645–654, New York,

NY, USA, 2011. ACM.

	Abstract
	Resumo
	Acknowledgements
	Introduction and Motivation
	Basic Concepts and Related Work
	Resource Descriptors
	Image descriptors
	Metadata and Metadata Standards
	Other Descriptors

	Document Management
	Document Annotation and Retrieval
	Semantic Web
	Semantic Annotations
	Linked Data and Entity Linking

	Conclusions

	Shadow-driven Document Representation
	Overview
	Abstract Model
	Shadow Instantiation
	Construction of a Shadow Base
	Conclusions

	Implementation of a Shadow Generation Process
	Overview
	Technologies Adopted
	System Architecture and Implementation Details
	Shadow Schema
	Instantiating the Extractor Module – DDEx
	Shadow Builder Module
	Shadow Production and Storage

	Conclusions

	Case Study
	Part I: Construction of a Shadow Base
	Part II: Querying the Shadow Base
	Part III: Annotating Documents via Shadows
	Producing Semantic Annotations
	Querying Annotations
	Using Shadows to Extract Geo-knowledge

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliografia

