
Managing Dynamic Repositories
for Digital Content Components

André Santanchè and Claudia Bauzer Medeiros

Institute of Computing,
State University of Campinas – UNICAMP,
CP 6176, 13084-971 Campinas, SP, Brazil
{santanch,cmbm}@ic.unicamp.br

Abstract. The Semantic Web pursues interoperability at syntactic and semantic
levels, to face the proliferation of data files with different purposes and represen-
tation formats. One challenge is how to represent such data, to allow users and
applications to easily find, use and combine them. The paper proposes an infras-
tructure to meet those goals. The basis of the proposal is the notion of digital
content components that extends the Software Engineering software component.
The infrastructure offers tools to combine and extend these components, upon
user request, managing them within dynamic repositories. The infrastructure adopt
XML and RDF standards to foster interoperability, composition, adaptation and
documentation of content data. This work was motivated by reuse needs observed
in two specific application domains: education and agro-environmental planning.

1 Introduction

The reuse of digital content is an issue that is attracting increasing attention. In the context
of this work, reuse can be defined as the practice of use an existing content object to
build a new digital artifact using the object’s content partial or totally [7, 13]. Reuse
advantages include productivity improvement and cost reduction on development and
maintenance. Furthermore, frequency of reuse may be a quality indicator, and content
units designed for reuse can be quickly reconfigured.

On the other hand, there are several obstacles to supporting reuse; perhaps the most
serious is the problem of proliferation of data, systems and users. Several directions are
being followed towards solving these problems. One direction, which is investigated
in this paper, is to exploit the advances in the area of software component reuse, from
Software Engineering, combining them with database research on the Semantic Web
and interoperability.

The Semantic Web [9] foresees a new generation of Web-based systems, where
semantic descriptions of data and services will booster interoperability. In parallel, Soft-
ware Engineering has reached a high level of maturity concerning reuse units, by devel-
oping the technology of software components. Our idea is to extend these principles, to
comprise any digital content. From now on, this extended notion of component will be
called digital content component; the term will be used in this paper to denote any kind
of data e.g., pieces of software but also texts, audio, video, a result of a database query,
and so forth.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 66–77, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Managing Dynamic Repositories for Digital Content Components 67

Software components are built by assembling code into a standard package that en-
capsulates implementation details. Well defined interfaces are associated with the pack-
age structure. These interfaces define how the component will be adopted and adapted
into a new application, and how it will relate with other components and its execution
environment.

By the same token, our proposal for a digital component structure involves the en-
capsulation of specific data representations into a package with a standard format, and
public interfaces that support relationships among components.

Though the advantages of such generalization are evident, there remains the prob-
lem of putting it into practice. Thus, the paper is concerned with three main issues,
having digital content reuse and interoperability in mind. The first issue concerns es-
tablishing a model to represent a digital content component, adopting interoperability
standards preconized by the Semantic Web initiative. The second defines a strategy to
store and index large volume of these components in a database. Finally it is neces-
sary to build a framework to implement and manage content components. Our research
has been motivated by reuse needs experienced by work developed at the State Uni-
versity of Campinas, Brazil (UNICAMP) in two application domains: education and
agro-environmental planning.

The remainder of this text is organized as follows. Section 2 introduces related work.
Section 3 presents the proposed digital content component model and discusses storage
and implementation considerations. Finally, Section 4 presents concluding remarks and
the present stage of this work.

2 Related Work

Related work involves research on software components and reusability in Software En-
gineering, and standards for digital content and interoperability in the Semantic Web. We
discuss some attempts in these directions, starting from the software notion of component
and evolving to the database concept of repository.

2.1 Packages

Content reuse can be enhanced via assembly into a standard package for distribution. In
our work, package is defined as a structure that delimitates, organizes and describes one
or more pieces of digital content suitable to reuse.

This packaging approach has already been adopted in the educational domains. The
main example is the IMS Content Packaging Information Model [19], and based on that,
the SCORM – Sharable Content Object Reference Model [5], a proposal to structure and
distribute educational content in a package content form. Both aim at reusability, inter-
operability, location and adaptation facilities. They use XML to describe a hierarchical
structure of each content package and their respective educational metadata. Metadata
representation follows an IEEE standard for educational metadata, named LOM – Learn-
ing Object Metadata [8]. LOM has been coded in XML [23], with subsequent studies to
represent LOM in RDF [10].



68 A. Santanchè and C. Bauzer Medeiros

The adoption of open standards for component package structure and interface def-
inition is a key approach to achieve interoperability. Within the Semantic Web context,
XML and RDF are complementary standards, adequate to syntactic and semantic inter-
operability, respectively [4].

2.2 From Packages to Components

The package structure has limited capabilities. An evolution of this concept is achieved
when packages are designed not only to transport content via a standard container, but
to be connected with other packages and interact with them and their environment. This
corresponds to the concept of component.

The component concept is often associated with the software component concept,
which deals with software code. There is no agreement on the definition of the software
component concept, though definitions are closely related [2].

Like a package, a component is designed to be a unit of independent deployment.
There is a clear division between the content (encapsulated software implementation)
and some external structure where this content is encapsulated.

However, components have higher specialized external structures, which publish
component functionality by explicit contractual interfaces. To interact and work together,
component structure and interface follow a model that specifies design constraints.

2.3 Component Repositories

Component reuse can only become effective with adoption of a structure to store and
manage components in an efficient way. Many research initiatives concern component
storage and retrieval, especially on techniques to index components. Indexation can be
content-based or structure-based.

Prieto-Díaz [11] confronts two classification principles borrowed from library sci-
ence, to apply in component indexation. First, the enumerative method uses a classifica-
tion tree to organize components in categories and sub-categories. Second, the faceted
method describes components by a set of attributes (named facets); each facet is spec-
ified by setting a pertinent term value (comparable to attribute value, but restricted on
a list of possible values). Another option is using ontologies [20] to represent domain
knowledge associated with components.

Still another indexation solution uses component structure. The basic method relies
on component signature match [24], but it can be refined by a formal specification of
component behavior, used as a basis to behavior match [25].

3 A Proposal for Digital Content Components

3.1 Components’ Life Cycles

Any digital component infrastructure must support the entire cycle of component pro-
duction, storage, retrieval and use – see Fig. 1. Production comprises the well known
software component production process, which we propose to extend to any piece of data



Managing Dynamic Repositories for Digital Content Components 69

the user wants to share. Such components can be assembled automatically, or guided
by the user, through a tool named packager. The figure shows packager modules that
encapsulate distinct kinds of content components – spreadsheets, workflows, maps, etc.A
packager takes the form of a plugin attached to a software, which deals with the content, or
an independent module specialized to process some file formats. Components are stored
in a dynamic repository, and managed by a repository manager, which is accessed by
users to retrieve and combine them.Again in the figure, a developer uses an authoring tool
to compose distinct components – workflow, maps and workflow runtime engine – into
an executable unit to produce a map. This specific example reproduces a scenario we deal
with in UNICAMP, but without support of content components. In this scenario, experts
specify workflows to generate maps for environmental planning based on combining
several kinds of data. These workflows can then be run to produce distinct kinds of
environmental plans.

Fig. 1. Diagram of content component cycle for production/storage/use

The starting point for our work is the Anima project, an infrastructure for software
components [14] developed by the first author. Anima is being used to create educational
tools in several schools in the city of Salvador, Brazil. Anima comprises the complete
cycle illustrated in Fig. 1, but restricted to software components and without database
support. It provides support to building applications via component composition and uses
RDF to represent component packages, including interface specification and component
metadata. This allows applications to deal with software components implemented in
different languages. An Anima application can be represented via a network of com-
ponents whose configurations are stored in an XML file. This file can be dynamically
converted into applications implemented in specific languages throughout XSLT sheets.



70 A. Santanchè and C. Bauzer Medeiros

Moreover, Anima provides support to component execution and intercommunication via
an XML based protocol.

With this background in mind, our research considers three aspects of content com-
ponents: representation, storage/retrieval management and use.

3.2 Component Representation

Content Component Structure
A component’s structure is defined to be a unit, composed of four distinct parts: (i) The
content itself, in its original format; (ii) an XML specification of the internal structure
used for component organization, based on SCORM [5], which allows a hierarchical
description of components and sub-components; (iii) an RDF specification of component
interfaces; (iv) RDF metadata to describe functionality, applicability, use restrictions,
etc. Components can be recursively constructed from composition of other components,
each of which in turn is structured by the same four parts. It is important to point out that
XML has been proposed for aspect (ii), whereas all others are to be specified in RDF.
These choices are based in the following criteria.

The internal organization structure follows a schema whose format and interpretation
applies to all components. XML is a better choice in this case, where it acts as structuring
element. Additionally, it allows inclusion of links to external pieces, allowing reuse by
reference, as explained in [7]. External referenced entities include data generated by
remote units, Web services, etc.

RDF is the choice to represent the interface and metadata, since descriptions and
taxonomies are involved. RDF descriptions will promote straightforward indexation
and component management support, and can be extended to represent ontologies with
OWL [18]. RDF metadata with digital signature can ensure component provenance, and
thus be used to control component quality based on the source.

Figure 2 shows a partial example of a component specification for encapsulating
rainfall data. The content part stores a list of geographic positions for the rainfall stations
coded in XML. The metadata part represents component’s title and category. Specific
terms employed – such as “XML Rainfall Station List” – are extracted from domain-
dependent ontologies (e.g., see [12]).

The interface part shows three inputs and two outputs. All inputs are categorized
as simple messages without parameters (“single”). Outputs describe in RDF how the
contents are formatted (type arrow) for a given ontological context within a domain on-
tology (category arrow). This shows output should always contemplate not only syntactic
information (i.e., XML schema), but also semantics (ontology terms).

This four-part structure for component representation, which extends the Software
Engineering concept of software component to any kind of content, and promotes inter-
operability, is an important contribution of this work. Related work deals with some of
these aspects in an isolated form, without an integration perspective.

Categories of Content Components
We differentiate between two kinds of component – process and passive components. A
process component is a specific kind of digital content component. It encapsulates any
kind of process description (sequences of instructions or plans) that can be executed by



Managing Dynamic Repositories for Digital Content Components 71

Fig. 2. Diagram of content component structure

a computer. Therefore, they usually define an input interface, and their results change
according to different input values. The component of Fig. 2 is a non-process (passive)
component, and contains data that can be used by a process component. A passive
component’s interface matches the input interfaces of process components enabled to
use its contents.

In order to illustrate content component categories, we will borrow an example
from scientific applications. In this context, scientists are interested not only in reusing
results, but in sharing the whole process of experiment development. This originated the
notion of scientific workflows (e.g. [1]), to specify and record experiments; this allows,
among others, experiment reproducibility and therefore reuse. The WOODSS system
[15], developed by us, follows this approach: it enables the capture of activities in agro-
environmental planning to be stored as scientific workflows, which can be later edited,
composed and re-executed.

WOODSS’ users manage two main kinds of file: maps and workflows. The same
workflow can be executed using different input maps. Workflows are an example of our
process components, whereas maps are typically passive components. In our analogy,
a “workflow component” can be linked to different passive “map components”. Fur-
thermore, one may envisage defining interfaces to workflows, in RDF, that will impose
conditions on input files – e.g., indicating maps that can be acceptable as input.

Any digital content can potentially be packed in a component. The two requisites
for packaging are: existence of an appropriate packager for its format and, for process
components, existence of a runtime module enabled to run it. By the same token, two
or more components can be attached and packed into a higher level component. For
instance, consider a workflow component that receives two inputs: a map and a value v.
It applies a sequence of filters to the map, based on value v – and generates another map



72 A. Santanchè and C. Bauzer Medeiros

as output. These components can be stored separately or composed into a more complex
component that will deal with the specific map, and accept only input v.

Most process components cannot be executed directly, due to their need for inter-
preters or runtime modules, not embedded into their environment. In such cases, comple-
mentary attached components can perform this task. These complementary components
are named companion components. Process components, moreover serve as compan-
ions to passive components, i.e., a passive component needs some sort of code to be
processed.

The choice of the appropriate companion component to be associated to another
(passive or process) component is determined by the application manager, and is influ-
enced by the context. This allows dynamic component companion binding. Since this
binding is defined by the application manager, it is transparent to end users. This allows
a homogeneous treatment of passive and active components from the user’s perspective.

Using the Components
Content components can be used in many ways. Three forms of expected use are:
component insertion, content insertion and application construction.

In the first approach, components are inserted into documents or multimedia pro-
ductions as content pieces. This use of components can be compared with the insertion
of DDE/OLE objects into Windows documents, or insertion of embedded objects (such
as Java applets) into Web pages. The components inserted are commonly passive com-
ponents, or process components attached to passive components. For instance, a map
component attached to a workflow component can be inserted in a scientific report.

The content insertion approach is similar to component insertion. However, the client
unpacks component content and only this content is inserted into document or multi-
media production, without component structure and metadata. In this approach, content
components are used like content packages.

In the third usage form – application construction – components are used as basic
blocks to construct applications. Here, just like in software component composition, an
application is built from a network of interconnected components, following an archi-
tectural style [17].

This style guides digital content component usage and composition principles for
construction of applications. A software architecture using components defines a con-
figuration which involves components and connectors to bind components together. Our
principles combine the Anima model for component composition with some aspects of
the architectural style of C2 [22] – a message-based connection style for GUI software.

In our architecture each component is an independently executing peer, with its own
state and thread of control. Components can only communicate asynchronously with
other components via connectors – they can not use other forms of direct communication.
Connectors transport messages; messages must offer support for at least XML, but can
support another formats too (especially for performance purposes).

A message contains label, type and parameters represented in XML. The types’ for-
mats are defined by an XML schema and described by an associated RDF resource. The
same schemes, taxonomies and descriptions are used in component interface description.



Managing Dynamic Repositories for Digital Content Components 73

Figure 3 presents an example which combines process and passive components into
an application intended to display informations about a set of rainfall stations.A modified
version of the component illustrated in Fig. 2 will be used here, with some additional
informations about the stations.

To compose components together the application adopts an architectural style named
publish/subscribe [6]. Publish/subscribe style is based on messages produced by com-
ponents and distributed by a message manager. Components subscribe to events they are
interested in. Events are signalled by messages. In the example of Fig. 3, five components
are subscribing to events (represented by a large arrow).

Publishers are components that raise events by publishing a message that is forwarded
to every component that subscribes to that event. In the example, there are two visual
software components (at the left side) that play a role of buttons and publish messages
when the user clicks on them. The messages (“access” and “next”) are dispatched to
XML Rainfall Station List component, which subscribed to these events.

The “access” message induces the component to produce a “list” output message,
which contains the list of all rainfall stations. Two components containing XSL
stylesheets receive this message and convert it to a report and to a graphical represen-
tation of the rainfall station positions. The message “next” contains one rainfall station
(the next of the sequence) and follows an equivalent path. This composition results in a
browser of rainfall station lists.

Fig. 3. Configuration that illustrates a content component composition

The configuration of components and connectors to form the application is stored in
an XML document. This document contains the initial configuration of each component
involved and the connectors configurations.

The representation of the connectors in the XML document depends on the archi-
tecture used to compose the components. In the publish/subscribe architecture, each
connection is associated with a component subscription.

The framework of content components is designed to be flexible enough to adopt
more than one architecture. Each kind of architecture is described and classified in a



74 A. Santanchè and C. Bauzer Medeiros

taxonomy by an RDF description. An XML schema determines the format used in the
XML file that stores the configuration. Based on the RDF description the framework
determines the role played by the components and connectors and how the configuration
file will be interpreted.

3.3 Component Storage and Retrieval Management

A digital content component is a combination of raw data, XML data and RDF data.
The solution requires devising a database capable to interpret and manage each format,
since XML and RDF data will be used for indexation and internal structure exploration
purposes.

There are many possible solutions to this problem. They involve, among others, con-
siderations and tradeoffs between constructing a native XML DBMS versus a relational
DBMS that maps XML (and RDF) data to their structure and vice-versa. The data can be
dynamically mapped from XML and RDF to a relational database and vice-versa. Shan-
mugasundaram [16] proposes a process to map XML to a relational database, which
unifies many partial solutions to this problem. RDF, on the other hand, is based in a
strong connected network of interdependent description elements. Therefore, besides
the mapping, it is necessary to devise a model to retrieve coherent fragments of RDF
data [3], preventing the transfer of large data volumes for each query.

Other possible solutions are the use of a native XML database, alone or combined with
a relational database. On the one hand XML data can be stored and indexed in a native
way, on the other hand there are limitations to current XML database implementations,
such as the need for consistency mechanisms, transaction support, etc. To store RDF data
in an XML database will require a costly process to code and decode the descriptions
from XML data.

One of the purposes of this project will be to identify the best storage solution, as
well to combine it with a procedure to index and retrieve components. It will result
in a dynamic component repository, in the sense that components may be dynamically
combined. Indexation will be based on adapting and combining three techniques to the
context of content component: use of ontologies [20], component signature match [24]
and behavior match [25].

In many cases the connection of two components will need other intermediate compo-
nents, responsible for adaptations and conversions. The component repository manager
can find such components comparing input/output interfaces; however, this process can
produce many options for the same connection. Metadata associated with components
can then be used to help choose the adequate component configuration, e.g., for a given
quality requirement.

Another direction is to use the notion of DBMS monitoring to track the rate of use of
each repository component, and the rate of adopted combinations. This will help guide
the search for adequate component combination, based on previous experience, and can
indicate the quality of component, based on its use rate.

3.4 Reference Implementation Framework

The project includes a construction of a reference implementation framework to: pro-
vide an infrastructure for components execution and intercommunication; interact with



Managing Dynamic Repositories for Digital Content Components 75

a database to store/retrieve components; and provide support to component insertion,
adaptation and reuse by applications. This framework will be based in the Anima infras-
tructure [14].

The Anima model is being extended to support any kind of content. This work in-
cludes the extension of Anima’s software component model – presently based on mod-
ules coded in some program language – to deal with other types of process components,
such as workflows and spreadsheets, which can act in many cases like software compo-
nents. The construction of a workflow runtime component will be based in WOODSS. A
spreadsheet runtime will explore a bridge to a spreadsheet system, such as the Universal
Network Objects (UNO) [21], an interface-based component model of the OpenOffice
system.

4 Concluding Remarks

This project combines work in Software Engineering with Semantic Web and database
interoperability efforts. The main contribution is the formulation of an integrated view
over these research areas, taking advantage from progress in the software components
area to support development of applications in the Semantic Web. Another contribu-
tion is the four-part structure and the use of RDF to promote component specification
interoperability, which will enhance component storage and indexation over different
languages and standards.

The work proposed, under development, is based on previous experience in construc-
tion component-based applications for the educational domain [14], and on the use of
scientific workflows, stored in databases, for reuse and interoperability of environmental
applications [15].

Acknowledgments

This work was partially financed by UNIFACS, by grants from CNPq and FAPESP, and
projects MCT-PRONEX SAI and CNPq WebMaps and AgroFlow.

References

1. AnastassiaAilamaki,Yannis E. Ioannidis, and Miron Livny. Scientific Workflow Management
by Database Management. In Proc. 10th IEEE International Conf. on Scientific and Statistical
Database Management, pages 190–201, 1998.

2. Felix Bachman et al. Volume II: Technical Concepts of Component-Based Software Engi-
neering, 2nd Edition. Technical Report CMU/SEI-2000-TR-008, Carnegie Mellon University,
July 2000.

3. Alex Barnell. RDF Objects, November 2002. http://www.hpl.hp.com/
techreports/2002/HPL-2002-315.pdf, accessed on 10/2003.

4. Wolfram Conen and Reinhold Klapsing. A Logical Interpretation of RDF. Linköping
Electronic Articles in Computer and Information Science, 5(13), 2000. http://
www.ep.liu.se/ea/cis/2000/013/.

http://www.hpl.hp.com/
techreports/2002/HPL-2002-315.pdf
http://
www.ep.liu.se/ea/cis/2000/013/


76 A. Santanchè and C. Bauzer Medeiros

5. Philip Dodds, editor. Sharable Content Object Reference Model (SCORM) – Version 1.2
– The SCORM Overview. Specification, Advanced Distributed Learning Initiative, October
2001. http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?
fileid=840, accessed on 10/2003.

6. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

7. Franca Garzotto, Luca Mainetti, and Paolo Paolini. Information Reuse in Hypermedia Appli-
cations. In Proc. of the the 7th ACM conf. on Hypertext, pages 93–104. ACM Press, March
1996.

8. IEEE L.T.S.C. Draft Standard for Learning Object Metadata – IEEE 1484.12.1-2002,
July 2002. http://ltsc.ieee.org/doc/wg12/LOM_1484_12_1_v1_Final_
Draft.pdf, accessed on 10/2003.

9. Robert Meersman andAmit P. Sheth. Special Section on Semantic Web and Data Management
– Guest editor’s introduction. ACM SIGMOD Record, 31(4):10–12, 2002.

10. Mikael Nilsson. IEEE Learning Object Metadata RDF binding, August 2002. http://
kmr.nada.kth.se/el/ims/md-lomrdf.html, accessed on 11/2003.

11. Rubén Prieto-Díaz. Classification of reusable modules. In Ted J. Biggerstaff and Alan J.
Perlis, editors, Software reusability: vol. 1, concepts and models, pages 99–123. ACM Press,
1989.

12. Rob Raskin. Semantic Web for Earth and Environmental Terminology (SWEET). In Proc.
of NASA Earth Science Technology Conference 2003, 2003.

13. Ann Rockley. Fundamental Concepts of Content Reuse, chapter 2, pages 23–42. New Riders,
2000.

14. André Santanchè and Cesar Augusto Camillo Teixeira. Anima: Promoting Component Inte-
gration in the Web. In Proc. of 7th Brasilian Symp. on Multimedia and Hypermedia Systems,
pages 261–268, October 2001.

15. LauraA. Seffino, Claudia Bauzer Medeiros, JansleV. Rocha, and BeiYi. WOODSS –A spatial
decision support system based on workflows. Decision Support Systems, 27(1-2):105–123,
November 1999.

16. Jayavel Shanmugasundaram et al. A general technique for querying XML documents using
a relational database system. ACM SIGMOD Record, 30(3), September 2001.

17. Mary Shaw and Paul C. Clements. A Field Guide to Boxology: Preliminary Classification
of Architectural Styles for Software Systems. In Proc. of the 21st International Computer
Software and Applications Conference, pages 6–13. IEEE Computer Society, 1997.

18. Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL Web Ontology Lan-
guage Guide – W3C Candidate Recommendation, August 2003. http://www.w3.org/
TR/2003/CR-owl-guide-20030818/, accessed on 11/2003.

19. Colin Smythe, editor. IMS Content Packaging Information Model. Specification,
IMS Global Learning Consortium, Inc., June 2003. http://www.imsglobal.org/
content/packaging/, accessed on 11/2003.

20. Vijayan Sugumaran andVeda C. Storey. A Semantic-BasedApproach to Component Retrieval.
SIGMIS Database, 34(3):8–24, 2003.

21. Sun Microsystems. OpenOffice.org Developer’s Guide, 2003. http://api.
openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf, accessed
on 01/2003.

22. Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead, Jr., Ja-
son E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. A Component- and
Message-Based Architectural Style for GUI Software. IEEE Trans. Softw. Eng., 22(6):390–
406, 1996.

http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?
fileid=840
http://ltsc.ieee.org/doc/wg12/LOM_1484_12_1_v1_Final_
Draft.pdf
http://
kmr.nada.kth.se/el/ims/md-lomrdf.html
http://www.w3.org/
TR/2003/CR-owl-guide-20030818/
http://www.imsglobal.org/
content/packaging/
http://api.
openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf


Managing Dynamic Repositories for Digital Content Components 77

23. Schawn Thropp and Mark McKell, editors. IMS Learning Resource Meta-Data XML
Binding Specification, September 2001. http://www.imsglobal.org/metadata/
imsmdv1p2p1/, accessed on 10/2003.

24. Amy Moormann Zaremski and Jeannette M. Wing. Signature Matching, a Tool for Using
Software Libraries. ACM Transactions on Software Engineering and Methodology, April
1995.

25. Amy Moormann Zaremski and Jeannette M. Wing. Specification Matching of Software Com-
ponents. In Proc. of 3rd ACM SIGSOFT Symp. on the Foundations of Software Engineering,
October 1995.

http://www.imsglobal.org/metadata/
imsmdv1p2p1/

	Introduction
	Related Work
	Packages
	From Packages to Components
	Component Repositories

	A Proposal for Digital Content Components
	Components' Life Cycles
	Component Representation
	Component Storage and Retrieval Management
	Reference Implementation Framework

	Concluding Remarks

