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Abstract: The proliferation of bioinformatics activities brings new challenges 
– how to understand and organise these resources, how to exchange and  
reuse successful experimental procedures, and to provide interoperability 
among data and tools. This paper describes an effort toward these directions.  
It is based on combining research on ontology management, AI and  
scientific workflows to design, reuse and annotate bioinformatics experiments. 
The resulting framework supports automatic or interactive composition of tasks 
based on AI planning techniques and takes advantage of ontologies to support 
the specification and annotation of bioinformatics workflows. We validate our 
proposal with a prototype running on real data. 
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1 Introduction 

Scientific workflows (Wainer et al., 1996) are being increasingly adopted as a means to 
specify and coordinate the execution of experiments that involve participants in distinct 
sites. Such workflows allow the representation and support of complex tasks that use 
heterogeneous data and software (Cavalcanti et al., 2005). They differ from business 
workflows in several points. In particular, in bioinformatics they are characterised by  
a high degree of human intervention and variability in workflow design for the same task. 

Bioinformatics workflows are often specified manually and tasks are redefined  
from scratch (e.g., using script languages (Cavalcanti et al., 2005)). With the advent of 
distributed execution of workflows (e.g., in grids (Stevens et al., 2004)), task definition  
is sometimes being replaced by the invocation of a web service that performs that task 
(Gao et al., 2005). 

Manual composition is hard work and susceptible to errors. In bioinformatics, due to 
the constant evolution of the area and the combinatorial explosion of tools, there are  
too many alternatives for workflow construction and choice of appropriate services. 
Thus, there is a need for means to help scientists to design appropriate workflows. 
Another important issue is that of traceability, to ensure the quality of an experiment. 

The main idea behind our work is to take advantage of ontologies to support the 
specification and annotation of bioinformatics workflows and to serve as the basis for 
tracking data provenance (Fileto et al., 2003). An underlying assumption is that the 
problem of automatic or iterative composition of workflow tasks can be seen as an  
AI planning problem (Long and Fox, 2003). We extend AI planning techniques  
with ontologies to create a semantic framework for design, reuse and annotation of 
bioinformatics experiments. 

The paper attacks the problem of constructing and annotating scientific workflows, 
under the assumption that they are the basis for specifying and executing tasks  
in a distributed (laboratory) environment. Each activity within such a workflow can be 
executed either by invocation of a web service or of another (sub) workflow. 
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The paper’s main contributions are thus: 

• proposing a solution to the problem of composition of services, combining results 
from AI and ontology management, thereby helping design scientific workflows, 
while at the same time documenting design alternatives 

• using ontology repositories to enhance the semantics in automatic workflow 
construction and facilitate tracking data and procedure provenance 

• validating the proposal by means of a prototype for genome assembly  
and annotation. 

Our implementation takes advantage of WOrk-flOw-based spatial Decision Support 
System (WOODSS) (Medeiros et al., 2005), a scientific workflow infrastructure. 
Originally conceived for decision support in environmental planning, it has evolved  
into an extensible database-centred environment that supports specification, reuse and 
annotation of scientific workflows and their components. 

The rest of the paper is organised as follows. Section 2 describes related work. 
Section 3 presents our architecture. Section 4 discusses our prototype. Section 5 contains 
conclusions and ongoing work. 

2 Related work and concepts 

2.1 Workflows and web services in bioinformatics 

The genome assembly problem consists in joining and matching together pieces of DNA 
sequences to create a cogent sequence, much in the way crossword puzzles are put 
together. Constituent sequences are created inside a laboratory by procedures that extract 
pieces from a species’ DNA and then produce long strings of base pairs (ACGT). 
Challenges in this process include the adequate generation and annotation of sequences, 
as well as finding the appropriate means of assembling them together into an accepted 
genome. 

Genome annotation is the assignment of functions to each gene. The empiric 
verification of gene functions is a time and money consuming activity. Most functions are 
assigned based on the similarity between the DNA sequence of the target gene and the 
sequences of already annotated genes. Gene annotation can therefore be partially 
automated, but manual data verification is always recommended. 

Genome assembly and annotation are composed of several complex activities 
involving interactions among basic tasks, human intervention and access to 
heterogeneous data sources. A trend in the bioinformatics community is to see each  
such experiment as a workflow designed by scientists to help their daily activities  
(Oinn et al., 2004). However, this practice has little flexibility, hampering the edition and 
reuse of these workflows. 

Several other problems are involved in the construction of such workflows.  
Among them, this paper is concerned with: 

• data and software tool provenance 

• tool/task composition, translated into a problem of web service composition 

• mechanisms for finding the appropriate tools or services to execute a task. 
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We use domain ontologies as the basis for attacking these problems. The first  
question – provenance of data and software tools – directly affects the acceptance of the 
results of experiments. The quality of bioinformatics experiments depends on properly 
identifying data origins and the processes that produced these data (Buttler et al., 2002). 
At most times, provenance is indicated by laborious manual annotations, which often 
vary across laboratories. 

The second issue concerns tool/task composition while constructing the workflows 
(Cavalcanti et al., 2005; Yu and Buyya, 2005; Medeiros et al., 2005). We highlight three 
kinds of composition: manual (supervised), iterative (using top-down design practices) 
and automatic. In a scenario where several software tools are being made available on the 
web, the composition problem has become more important. To help this issue, many tools 
invoked by such workflows are now encapsulated into web services. 

Our third problem is to find tools on the web that execute some task. This search is 
typically based on keyword queries (Buttler et al., 2002) that can, however, return several 
unwanted results and may not find the desired tools. Even when found, the integration of 
a tool with the user’s system is not easy. Thus, laboratories rebuild tools, replicating work 
and decreasing tool sharing and reuse. 

The Semantic Web has been proposed to solve interoperability and discovery 
problems. However, this will require extending the languages to add semantics to service 
description and discovery – e.g., using ontologies. The development of Semantic Web 
services must address the challenges of automatic discovery, invocation, composition and 
monitoring of service execution. 

2.2 Planning and composition of web services 

Automatic composition of web services is a recent trend to meet some of the  
challenges and problems mentioned in the previous section. Users (in this paper, 
bioinformatics scientists) should be able to specify ‘what’ they desire from the 
composition (high level goals and actions) and the system supplies the ‘how’ – the web 
services to be used, how to interact with those services, etc. The process of composing 
the services must be transparent to the users and the detailed descriptions of the 
composed services must be generated automatically by the system from the users’ 
specifications. 

Among the proposed solutions for the automatic composition problem  
we mention those based on planning, exploited by us and those based on workflows. 
Workflow-based composition methods can be divided into static and dynamic workflow 
generation (Rao and Su, 2004). In the first case, the workflow is specified manually and 
only the selection and binding of atomic web services with the workflow is automatic. 
Dynamic composition automatically creates the workflow and selects atomic services, 
e.g., da Costa et al. (2004) and Fujii and Suda (2004). 

The task of presenting a sequence of actions to achieve an objective is called  
in AI plan synthesis, or planning (Ghallab et al., 2004; Russel and Norvig, 2003). 
Planning is a mature area in AI, with well-studied algorithms. Such techniques are 
currently used in mobile robots, manufacturing processes and emergency management, 
among others (Munoz-Avila et al., 2001; Nau et al., 1995). 

Recent research efforts have investigated the use of planning to solve the problem  
of automatic composition of web services (Blythe and Ambite, 2004). According to 
Srivastava and Koehler (2003), in order to use planning in this context, AI planning 
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concepts must be extended to consider factors such as complex control structures with 
loops, non-determinism and conditionals. 

We highlight other important characteristics, not usually found in AI planning,  
such as: the use of non-functional attributes, like cost or quality, which can facilitate the 
choice of the plan most adequate to the user’s requirements; the need to support semantic 
constructions such as hierarchies (abstractions), as well as compatibility with the different 
Semantic Web service description standards, like OWL-S (www.daml.org/services)  
and WSMO (www.wsmo.org); and the support of extended goals involving complex 
conditions on process behaviour. 

Many planning systems and algorithms have been considered as candidates  
for supporting composition of web services. For instance, the work of (McIlraith  
and Son, 2002) extends Golog (Levesque et al., 1997), a language based on situation 
calculus, to allow automatic building of web services. Another option is the use of 
Planning Domain Definition Language (PDDL), a widely used formal language,  
whose notation is similar to OWL-S and is thus a good candidate to use in specifying  
web services composition. Other solutions involve rule based planning methods 
(Medjahed et al., 2003) and symbolic model checking, which has also been used to 
automatically compose services described in OWL-S (Traverso and Pistore, 2004). 

Yet another method is hierarchical planning, to support iterative and automatic 
composition of services to specify workflows. Hierarchical planning is an AI planning 
methodology that creates plans by task decomposition. One well-known hierarchical 
planner is Simple Hierarchical Ordered Planner 2 (SHOP2) (Nau et al., 2003) which is 
based on Hierarchical Task Network (HTN) (Russel and Norvig, 2003). SHOP2 won the 
prize of one of the four best planners in the 2002 International Planning Competition 
(Long and Fox, 2003). 

Sirin et al. (2004) use SHOP2 for the automatic composition of web services and  
the inputs to their planner are specified in OWL-S. The authors claim that automatic task 
decomposition using HTN planning is very similar to the concept of complex process 
decomposition used in OWL-S ontologies. 

None of the planning proposals mentioned treats complex objects or objects created 
dynamically, two very important characteristics within web services. Moreover, planning 
algorithms do not consider the existence of relationships among objects which might 
result in plan improvement. As will be seen, we solve these issues by extending SHOP2 
to take advantage of ontology repositories. 

3 An architecture for automatic composition via planning 

This section presents our solution to the problem of helping scientists design scientific 
workflows. As will be seen, one important issue is the possibility of reusing parts of 
workflows constructed by other scientists. Another relevant issue is annotation. Reuse 
and annotation are supported by ontologies, which also guide the planning algorithm. 

Our plans are specifications of scientific workflows. Thus, in this section, we will 
use, indistinctly, both terms. 
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3.1 Repositories 

Our workflow design and execution process is based on combining AI planning 
techniques with information stored in three repositories: Ontology Repository, Service 
Catalog and Workflow Repository. While the Ontology Repository contains information 
about domains and service types, the Service Catalog stores information about service 
instances. 

In more detail, the Ontology Repository contains two kinds of ontologies  
(Domain and Service) that are used to support automatic composition and annotation of 
services and workflows – in our case study, information about genome assembly and 
annotation, see Section 4. The concepts in the Domain Ontology describe a given 
application domain. The concepts in the Service Ontology describe the different kinds of 
services and their relationships. This ontology is used in automatic composition to help 
check compatibility among composed tasks (e.g., interface matching). The Service 
Ontology does not store descriptions of the services themselves. Rather, it contains what 
we choose to call ‘service type’ – i.e., a generic description of each kind of service, its 
generic interface, parameters, etc. Thus, it will contain a description of ‘alignment’ 
services, but no instantiation of this type of service. Service instantiation is left to the 
Service Catalog. 

Figure 1 shows the ‘is a’ relations of some services in the Service Ontology  
(service types) and the services in the Service Catalog (service instances) – e.g., a 
FASTA service ‘is a’ service of the type alignment. Our repositories also store 
‘aggregation’ relations, for example, the service myAssembly, in the Service Catalog, can 
be associated with a workflow, in the Workflow Repository, that is an aggregation of the 
services phred and phrap. This kind of relationship is used in our iterative composition 
process (in each iteration, the system suggests to the user how to decompose an abstract 
activity into more concrete activities). 

Figure 1 Parts of our service ontology. Service types appear in white ovals, service instances  
in dark ovals 

 

The Service Catalog plays the role of a Universal Description Discovery and Integration 
(UDDI) registry, enhanced with extended functionalities. Standard UDDI structures  
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store information about service providers, the web services they make available  
and the technical interfaces which may be used to access those services ports.  
Our Service Catalog, besides, stores a service’s non-functional attributes (metadata), such 
as execution time, quality, reliability and availability, used to rank workflows. Figure 2 
presents the standard UDDI web services register approach and our extension to this 
approach. Each service entry in the Catalog is annotated with the ontological concepts of 
the Service Ontology. The port types are annotated with concepts from the Domain 
Ontology. 

Figure 2 Service register approach: UDDI approach and our semantic approach 

 

The Workflow Repository, adopted from WOODSS (Medeiros et al., 2005), stores 
annotated (sub) workflows at different abstraction levels, from abstract specifications to 
runtime workflows. The Workflow Repository also stores all annotations and information 
on data needed to run a given executable workflow. This includes pointers to files  
that store intermediate execution results and metadata associated with each execution 
(e.g., timestamps, actors involved). 

The repositories are interrelated as follows. Workflows and data in the Workflow 
Repository are annotated with terms from both ontologies; the services invoked within 
concrete workflows come from the Service Catalog. Moreover, concepts of the Service 
Ontology are used to annotate terms in the Service Catalog; and concepts in the Domain 
Ontology annotate types stored in the Service Ontology. Section 4.1 discusses these 
interrelationships for our case study. 

3.2 The composition architecture 

Our architecture is able to deal with automatic composition of workflows based  
in web services. Figure 3 shows this architecture, highlighting the main modules and  
their interactions. Only the main connections among modules are represented. Section 4 
presents our implementation of this architecture. 
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Figure 3 System architecture 

 

The Interface Layer allows the user to design, search, edit and execute a workflow and 
store it in the repository. It also allows a user to register services and workflows,  
request the execution of a workflow and interact with this execution. Furthermore, it 
supports syntax verification and suggestions of activities; automatic specification through 
AI planning; and iterative composition. 

The Service/Workflow Discovery module is responsible for the search of services  
and workflows that meet user requests. Search can be based on context, syntax and 
functionality. Search for context is based on ontological annotations of services. Search 
on syntactic compatibility is based on the parameters of the services’ interfaces.  
Search for functionality is based on keywords and can be local (Repositories) and global 
(on the web). Whenever the global search returns a service that is not already registered 
in the Service Catalog, the user is required to validate and register the appropriate 
answers in the local Repository. Hence, the Repository contains only properly annotated 
services, whose provenance and quality are guaranteed by some expert. When no service 
or workflow meets the requests, this module will ask the Design module to create new 
workflows. 

The Design module is responsible for constructing a workflow, which at any time  
can be edited by a scientist (the Editor box). The Automatic Composer encapsulates the 
Translator-Planner-Evaluator modules of AI planning, see Rao and Su (2004). It receives 
a plan request R from the interface and generates workflows automatically or iteratively. 
To generate these workflows, the Translator needs first to convert the request to the 
planner’s language. Next, the Planner interacts with the Workflow and the Ontology 
Repositories to obtain information for plan generation and with the Service/Workflow 
Discovery facility to check for existing available services. 

Rather than generating executable workflows, our planner produces abstract 
workflow specifications. The reason is that plans refer to service types (defined in the 
Ontology Repository) rather than to the services themselves (whose specification is 
stored in the Service Catalog). This choice was made mainly to improve efficiency and 
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scalability in the planner (Agarwal et al., 2005). The Evaluator converts these abstract 
workflows into concrete ones and chooses from among them the workflow that best suits 
the request R. This selection is based on the non-functional attributes (execution time, 
quality, reliability, etc.) that annotate services in the Catalog and can be guided by the 
user. The workflow can then be forwarded to the Workflow Engine, where the user can 
provide the input data and start its execution. 

The Editor module supports workflow design. It accesses the workflow repository 
and lets the user manually compose, reuse and annotate workflows. Annotations include 
free text and references to the ontology repository. This repository can also be updated 
(e.g., adding or modifying an ontology). However, this is outside the scope of the 
architecture and is left to specialised tools – e.g., Protégé (Knublauch et al., 2004) – since 
the architecture’s goal is not to manipulate ontologies but to use them to help experiment 
annotation, reuse and specification. 

The user interacts with the Service Register module in order to define new  
services. These services are described in WSDL and OWL-S and linked to the Ontology 
Repository. These services can be those developed and available locally, or those  
that are available elsewhere, but whose provenance has been certified by the user. New 
service types are registered in the Ontology Repository using an ontology editing tool. 
New services are entered into the Service Catalog using the Service Register Module. 

3.3 Execution environment 

The Workflow Engine follows the specification of the Workflow Management Coalition 
(http://www.wfmc.org). It is responsible for workflow execution and supports user 
interaction, e.g., to validate or interrupt execution flow. It is responsible for controlling 
the execution of all workflow activities. The operations provided by the Workflow 
Engine are: interpretation of the complex process definitions; creation and management 
executable workflows; and supervisory and management functions. It sends the requests 
(and parameters) for service invocation to Service Request. 

The Service Request module is responsible for the management of each web service 
request, communicating with the web server provider, sending input data and receiving 
the results. This module also detects service faults. Faults are registered and used to 
calculate service non-functional attributes (such as availability). 

There are three alternatives to solve a fault. The first is to try and re-execute the 
service that presented the fault. This is useful when a service is unavailable during  
a short period of time. The second is to replace the faulty service by an equivalent service 
(of the same type but with less ranking, following non-functional attributes, in our 
Service Catalog). In this case, the Workflow Engine module can ask the Evaluator 
module for the selection of an alternative equivalent service to replace the faulty service. 
If these alternatives do not work, the Workflow Engine can request new plans to solve the 
problem. 

This architecture supports the three kinds of composition presented in Section 2.1.  
In manual composition, the system will only let a user combine two activities if their 
inputs and outputs are ontologically compatible. Ontological compatibility is based on 
subsumption properties, see Fileto (2003). In iterative composition, in each iteration the 
system suggests to the user tasks or sub-workflows that have been previously stored in 
the repository and that can be used for an already defined task. In automatic composition, 
it designs a set of workflows that satisfy the user’s requests. 
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3.4 User interaction 

Users can interact with the architecture to annotate and design workflows, monitor and 
change their execution and register services. One of the most important user interactions 
is the request for a plan (i.e., the construction of a new workflow to meet a specific 
request). This process starts when a user (human or software agent) makes a request for  
a service. 

This request can be the description of a goal or task. Starting from here, the Planner 
generates alternative plans to meet the request. In this process, the planner accesses the 
Domain and Service ontologies to obtain the necessary information for the planning 
process. Once the plans are generated, they are passed on to the Evaluator, which chooses 
the best plan to meet user needs. 

Domain and Service ontologies, stored in the ontology bases, are key concepts  
to this process. Initially, they are used by the Translator to generate a request to the 
planner, disambiguating the user’s demand for a service. Next, these bases are used by 
the Planner to generate the appropriate service compositions. The Planner accesses them 
to obtain the functionalities of the services and generates an abstract scientific workflow. 
The Planner uses the domain ontology to improve the efficiency of the planning process 
and to facilitate the modelling and the management of complex objects. The planner’s 
output contains several workflows (the plans) with equivalent or similar functionalities. 

4 Case study: genome assembly and annotation 

We implemented a prototype of the architecture presented in Section 3 to solve  
the problems of genome assembly and annotation. We decided to use SHOP2 in our 
implementation because it provides the following benefits:  

• it supports embedding domain knowledge to control the search space and improve 
efficiency 

• it has been successfully used in a variety of real-world planning-based applications 

• it allows inclusion of different types of pre-condition constraints for service 
operators as well as calls to external systems 

• it enables reuse by facilitating selection of appropriate methods from domain-related 
operator libraries. 

Section 4.2 shows how we extended the SHOP2 language to support complex objects and 
enhanced semantics. 

4.1 Repository instantiation 

In order to implement the architecture, we had to construct the appropriate ontologies. 
Ontology editing uses Protégé (Knublauch et al., 2004), a well known ontology editing 
tool. 

Several bioinformatics ontologies have been proposed (Smith and Schulze-Kremer, 
2003; Stevens et al., 2000). Some are very detailed taxonomic ontologies, used to  
cluster (Yoo and Hu, 2006) and/or to annotate data (Smith and Schulze-Kremer, 2003). 
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Others are concerned with describing relationships among bioinformatics tools  
(akin to our service ontology) or objects manipulated in bioinformatics (e.g., our domain 
ontology). The latter are still under development and are usually defined independently. 
This hampers their use in an integrated manner. Ontology management techniques, such 
as alignment or integration (Kalfoglou and Schorlemmer, 2003) are not suitable for this 
kind of need, since they apply when ontologies cover associated concepts. 

Since our goal was to help scientists to specify and manage their experiments,  
we developed detailed domain and service ontologies, specific to genome assembly  
and annotation, extending a generic bioinformatics ontology (Stevens et al., 2000) and 
specifying relationships between these two ontologies. As a consequence, they can be 
considered to form a (single) complex ontology covering services and domain aspects. 

Using our ontology repository, we annotated bioinformatics data and tools in order to 
allow semantic search and automatic composition of services. Figure 4 shows a small 
portion of our ontologies and their interrelationships. Domain and Service portions are 
separated, thus helping establish distinct relationships among the concepts. In particular, 
the figure shows how concepts in the Service Ontology help qualify services and how 
concepts in the Domain Ontology help define service parameters. To simplify the figure, 
we omitted several relationships. 

Figure 4 Small example of the relationships among our repositories 

 

We highlight only the relationships (links among the repositories) involved with 
nucleotide alignment. The blastn service entry in the Service Catalog corresponds to  
a service that implements a nucleotide alignment, which is an alignment tool description 
(Domain Ontology annotation). The nucleotide alignment has as input an identified 
sequence and as output an alignment, both concepts of the application domain, duly 
annotated by appropriate references in the ontology. The dotted line between nucleotide 
alignment and nucleotide sequence indicates a restriction on input data: the identified 
sequence input to the blastn service must be a nucleotide sequence. 
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In our Domain Ontology, all concepts are atomic data types (integer, strings, etc.)  
or, recursively, an aggregation and/or a generalisation (or specialisation) of concepts.  
We can observe in Figure 4 that nucleotide alignment is a specialisation of alignment tool 
and identified sequence is an aggregation of sequence and identification. 

The Domain Ontology also provides semantic annotation for workflows and data. 
This is exemplified in Section 4.3. 

4.2 Planning with ontologies 

A SHOP2 specification (Nau et al., 2003) is composed of three sections: domain 
definition (defdomain); problem definition, defining the problem that the planner must 
solve (defproblem); and requests to find the plans that solve a given problem (find-plans). 

SHOP2 domain definition requires methods and operators. Operators specify 
available activities to implement methods. Methods are used in the planning  
process – a plan, at its highest level, is a concatenation of method invocations,  
recursively refined into methods and operators. Methods provide a convenient way to 
write problem-solving ‘recipes’ that are used by SHOP2 in order to solve problems, they 
correspond to activity types in our Service Ontology or workflows in the Workflow 
Repository. Figure 5 shows part of the translation of our Bioinformatics Domain and 
Service Ontologies into SHOP2. This translation is automatic and performed by the 
Translator module. 

From a high level point of view, our translator produces a defdomain specification 
enriched with concepts from the Ontology Repository. Concepts in the Service Ontology 
and relationships in the Domain Ontology are translated into operators. Service and 
Domain concepts are subsequently translated into methods. Translation works as follows. 
We now explain in detail how ontologies are introduced to help planning (i.e., workflow 
construction). 

Each ‘type of service’ concept in our Bioinformatics Service Ontology generates  
a SHOP2 operator whose pre-conditions are the service’s input data types and whose 
post-conditions are the output data types. For example, Lines 2, 3, 6 and 7 of Figure 5, 
respectively, show the service types ORFFinder, nucleotide alignment, filter and base 
calling translated into SHOP2 operators. In more detail, nucleotide alignment is a type of 
service described in SHOP2 (Line 3, Figure 5) as an operator whose pre-condition is the 
existence of an identified sequence (input) and whose post-condition is the production of 
a nucleotide alignment (output). The value of 50.0 for this line indicates that the user 
provided this value as an upper bound estimate for the execution time of any nucleotide 
alignment service. As will be seen later on, the Evaluator will suggest instantiations for 
each service type, and use these values to rank suggestions. 

A SHOP2 planner does not support generalisation/specialisation hierarchies of 
operators (tasks), neither does it manipulate complex objects. Thus, we had to extend  
this planner to fully support both facilities. To allow complex objects, the Translator 
creates SHOP2 operators that are used to represent ontological relationships. Complex 
objects are structures created from basic objects (basic concepts in our Domain 
Ontology). Since our ontologies contain aggregation and specialisation relationships,  
we use this knowledge to improve SHOP2 functionalities. For each aggregation 
relationship, we created an operation called Compose, with cost zero. Its input specifies 
the concepts that will be aggregated and its output is the aggregated concept (e.g., in  
Line 5 of Figure 5, an identified sequence aggregates a nucleotide sequence and its 
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identification). Similarly, we created the converse Decompose (e.g., Line 4 of Figure 5). 
To represent specialisations/generalisations, for each concept that is a specialisation,  
we create an operation called IsSpecialisationOf with cost zero that, given the specialised 
concept, returns the corresponding general concept. Similarly, we created the converse 
IsGeneralisationOf. These four operators extend SHOP2’s planning capabilities. Whereas 
the other operators are transformed into service invocations by the Evaluator, these four 
serve only to help compose complex tasks in a plan. 

Figure 5 Part of the SHOP2 definition domain for bioinformatics ontology 
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Once all operators have been specified, methods can be defined. For each type of  
service in the Service Ontology, the Translator creates a SHOP2 method that describes 
which operator (or set of operators) can execute this method. For example, Lines 21, 28 
and 35 of Figure 5, respectively, show the headers of the methods alignment, nucleotide 
alignment and aminoacid alignment. 

In bioinformatics, many times, the user needs to obtain a certain result without 
knowing what tasks produce this result (or concept) – for example, starting from  
a chromatogram (input concept), he/she wants to obtain an alignment (output concept). 
To allow the user to pose such requests, the Translator needs to create additional methods 
whose execution will generate concepts in the Domain Ontology. 

4.3 Creating and instantiating plans 

The SHOP2 problem definition section (see Figure 6(A)) is composed by a problem  
name (e.g., problem1), the label of the definition domain (e.g., bioinformatics ontology), 
the state of the world (a set of conditions that are true in a given instant) and the  
set of methods that must be utilised by the planner (e.g., nucleotide alignment ch1).  
The SHOP2 request to find plans (see Figure 6(B)), identifies the problem to be solved 
and requirements for the solution plan (such as maximum cost). 

Figure 6 Plan synthesis and selection 
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4.3.1 Plan specification 

We now clarify the process of plan specification using an example. The user requests  
a plan to transform a chromatogram (input concept) into a nucleotide alignment  
(desired concept). Part A of Figure 6 shows the input request (already translated to 
SHOP2), indicating that the user wants the system to produce a workflow for a nucleotide 
alignment using chromatogram ch1. Notice that the user defines the request, but does not 
need to specify how to accomplish it. Part C of this figure shows the four possible plans 
(abstract workflows) generated by SHOP2 to answer the request, ordered by increasing 
cost order. 

Plans are sets of methods that must be executed sequentially to achieve the goal.  
For instance, the first plan ((!BASE CALLING CH1) (!NUCLEOTIDE ALIGNMENT 
CH1)) shows that a possible solution is to execute a service of type base calling,  
using ch1 as input and passing the result of this execution to a service of type nucleotide 
alignment. Symbolic variable ch1 is a chromatogram as defined in the defproblem  
section – Figure 6(A). 

This figure also shows, for instance, (Plans 3 and 4) the need for ontological concept 
manipulation. These plans chose the ORFFinder service type, which needs the sequence 
concept as input (see Line 2 of Figure 5). However, the problem’s input is a complex data 
object of type identified sequence (see Figure 4). Thus, in order to feed it to ORFFinder, 
the planner had to use our Decompose identified sequence and Compose identified 
sequence ontological relationship operators to, respectively, disaggregate the problem’s 
input and re-aggregate the output from ORFFinder. 

4.3.2 Plan instantiation 

The four plans generated are abstract. For instance, a nucleotide alignment can be 
implemented by services blastn or by FASTA. Abstract plans are forwarded to the 
Evaluator that will generate an executable workflow by finding the web services that best 
fit each abstract service in the plan, using the ontological annotations of the Service 
Catalog. Our Evaluator takes several criteria (metadata from the Service Catalog) into 
consideration to select the most appropriate plan. These characteristics are retrieved by 
the Evaluator from the Service Catalog, together with service description. Figure 6(D) 
shows that the Evaluator chose the fourth plan. This plan was chosen because attributes 
in the service Catalog state that the use of the filter service increases the quality of the 
plan results and, if the user is looking for genes, the use of the ORFFinder service will 
improve the result. 

Part D of Figure 6 shows a graphical version of the workflow for the selected abstract 
plan. Figure 7 shows a concrete (executable) version of this abstract workflow, using our 
graphical interface. Activities are rectangles, transitions are arrows and data repositories 
are represented as cylinders. Through this interface, the user can create, edit, annotate and 
execute workflows. 

In manual editing, to insert a new activity in a workflow, the user must select one 
activity from the list of available activities from the Service Catalog. The system checks 
the consistency of all transitions (linking outputs of one activity to the inputs of another 
activity). Inputs can have default values (e.g., ‘60’ is the default value for minimum ORF 
size of the myORFFinder activity). 
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Figure 7 Workflow graphical representation adopted from WOODSS 

 

To insert new data, the user must select a data type from the list of available concepts of 
the Domain Ontology. Other operations allowed by the graphical interface are: embed a 
(sub) workflow inside a workflow, save, load, export and import workflows. This allows 
scientists to reuse (parts of) stored workflows to create new experiments. 

The user can also monitor workflow execution. For instance, he/she can click in the 
arrows (transitions) to verify the produced data and the metadata associated (such as  
the name and version of the tool that produced this data; the date in which the data were 
produced; the origin of the data; etc.). 

Scientists can designate which annotated workflows can be stored in the repository,  
to be used in subsequent experiments or to be shared with other scientists. When an 
experiment is saved, the data produced in each step of workflow execution are also saved. 
Moreover, a set of annotations are assigned to each produced data set, taking advantage 
of ontology type and service definitions. These annotations describe the origins of the 
data and the service (or set of services) that produced that data, facilitating data and 
service provenance traceability. In the example of Figure 7, the user, when consulting the 
result alignment, sees that the alignment was produced by blastn service, using the blast 
database nt and, as input sequence, the ORF produced by myORFFinder service. 

5 Conclusions and ongoing work 

This paper presented an ontology-based framework to support bioinformatics work.  
It helps the user in the three kinds of composition: manual, iterative and automatic.  
It takes advantage of AI planning techniques, combined with ontologies and Semantic 
Web standards. The solution is based on repositories that store information on  
services and their characteristics, on service and domain ontologies and on workflows.  
In particular, ontology repositories are extensively used in enhancing plan generation 
with semantics and in helping users design better scientific workflows. 



 

 

 

 

   284 L.A. Digiampietri, J.J. Pérez-Alcázar and C.B. Medeiros    
 

    
 
 

   

   
 

   

   

 

   

       
 

Several bioinformatics laboratories have reported the use of scientific workflows  
and of a workflow infrastructure to support their experiments – e.g., (Oinn et al., 2004). 
Our work extends these approaches in three main directions: first, its use of AI planning 
techniques to help design the ‘best’ workflow for a task; second, the use of  
ontologies to semantically support workflow construction, both in selecting tasks and  
in finding appropriate services; third, the use of these ontologies in annotation and thus  
help traceability. We have built a prototype to verify and validate our proposal, for 
bioinformatics problems, specifically for genome assembly and annotation. 

Ongoing work concerns mechanisms for improving provenance and traceability 
support. We also intend to explore other extensions for plan synthesis – e.g., re-planning 
and plan repair. We also intend to extend our bioinformatics ontology to reach a wider 
context in bioinformatics, such as comparative genomics and metabolic pathways. 
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