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Protein clustering is widely used in order to characterize functionally proteins. Many 
automatics methods for protein-clustering use a graph-based approach. In this work, we 
propose a methodology for evaluation of  the solution given by these methods. 

 
1. Introduction 
 
In the last decade more than two hundred prokaryote genomes and dozens of 
eukaryote genomes have been sequenced [1]. This has allowed to identify and to 
catalog thousands of genes from the sequenced organisms. With the exponential 
growth of genomic data, the notion of homologous gene families became 
central. 

In this context of great growth of genomic data, it is not feasible to realize 
laboratory experiments to identify the function of each sequenced gene, and not 
even to use phylogenetic methods to group genes in a high throughput way. 
Therefore sequence similiarty algorithms are widely used to cluster gene/protein 
sequences. This paper focuses on the development of a methodology for 
evaluation and validation of protein clusters that are the result of computational 
clustering methods. This is motivated by the fact that a consistent and uniform 
methodology with that aim is still lacking.  

This paper is organized as follows. In section 2 we present the used basic 
concepts. Then, in section 3, we describe briefly some of the many protein-
clustering methods available in the literature. In section 4, we show the 
evaluation criteria used in this work. In section 5, we show the metrics applied 



to the solution given by each method. In section 6, we discuss the results. 
Finally, in section 7, we conclude and suggest future work. 
 
2. Basic concepts 
 

2.1. Homology 
 
Homologous genes are categorized into two categories: paralogs (if these genes 
belong to the same organism) and orthologs (if the homologous genes belong to 
distinct organisms). 

Ideally, one should create a phylogenetic tree of sequences involved in 
order to group them into homolog families. However, phylogenetic analyses are 
difficult and time consuming. Therefore, sequence similarity is used to infer 
homology relationships. Similarity, which allows a mathematic definition, can 
be measured through several algorithms, e.g [2]. The greatest difficulty is to 
infer homology relationships when there are no good direct similarities among 
two sequences, because, in this case, it is necessary to use indirect similarity 
relationships. These relationships can result in bad categorization of some 
proteins into families (false positives). 

 
2.2. Protein domains  

 
The function of a protein is determined by its tridimensional folding (tertiary 
structure). Nevertheless we can use the aminoacid sequence (primary structure) 
to deduce the folding pattern of the protein. Here, the concept of protein domain 
is central. Domains are functional substructures inside a protein. They are 
subsequences that induce some folding pattern and specific function.  

When analyzing the primary sequence of a protein, we usually search for 
domains because they are the most conserved and important regions of the 
sequence in the functional viewpoint. So, when analyzing classification methods 
to generate gene families, we must have in mind the biologic reality that we 
want to map. 

 
2.3. Classification into protein families 

 
A graph based approach for the protein clustering problem is tipically 
formulated like this: 

Input: a set of n aminoacid sequences representing proteins of one or more 
organisms. 
Comparison: Sequences are compared all against all for obtaining some 
measure of similarity. 
Output: A classification of the input sequences into groups (families). 



 
Underlying of the comparison process there is a graph G where each protein 

sequence corresponds to a vertex. There is an edge between two vertices u and v 
iff they are enough similar according to a certain similarity criteria. 
 
3. Existing Methods for Protein Family Classification 
 

3.1. COGS 
 
Tatusov et al [3] developed the COG database – Clusters of Orthologous groups. 
The objective of the COG project is the classification of proteins from complete 
genomes into orthologous groupings called COGs. The construction strategy of 
the COGs is based on the principle that any set of tree or more proteins from 
distant genomes that are more similar to each other than to other proteins  
constitute an orthologous group.  

All proteins are compared all against all with BLASTP [2]. The resulting 
graph G is undirected and unweighted. The more evident paralogs are grouped 
in one vertex. Triangles of orthologous proteins are detected. This triangles are 
formed when the best alignment from a protein in the organism A in relation 
with its two orthologous from the organisms B and C is better than the second 
best alignment, been that the same relation stay valid for the three involved 
proteins and organisms. After this, the triangles that share one side are joined in 
the same COG creating bigger COGs. 

This criterion has the advantage of accommodate too proteins that evolved 
very fast and do not have a great similarity. In agreement with this criterion, 
even proteins with sequence relatively distant can be grouped in the same COG.  
Nevertheless, there is a non-repressible pos analyses phase that become the 
process dependent of a great manual intervention. Each family is analyzed 
manually and is dismounted or grouped with other families if necessary. 

New members are added to the original COGs through the program 
COGNITOR that, given a query protein, determines, among the COGs stored, 
what is the COG that best accommodates this protein. It is necessary that a 
protein presents at least two best hits with the member of the same COG to 
become candidate to enter in this COG. 

This classification is of great importance to the gene functional category 
prediction and annotation. It was demonstrated that, typically, between 95% and 
97% of the COGNITOR predictions do not require corrections. 

 
3.2. Connected components 

 
For the project Xylella fastidiosa [4], the following similarity criteria was 
adopted: two proteins are similar if their alignment has a e-value (measured by 



BLASTP) less or equal then 10e-5 with a coverage of at least 60% of the query 
sequence and 30% of the subject sequence.  

Thus, the underlying graph G is undirected and not weighted. Families are 
given by the connected components of G. This approach is also known as single 
linkage clustering and it demands that a protein has to be similar to at least one 
protein in a group to be included in that group. As a consequence of the 
methodology, families are disjoint. 

There are two crucial problems in this approach. First, results depend 
critically on threshold values for the statistical significance (e-value) and 
alignment coverage. It’s difficult to empirically find good values. This comes 
from the fact that some families are more cohesive, that is, proteins are more 
near from each other, while others are sparser. Thus, threshold values that lead 
to some good cohesive families might erroneously divide others.   
Besides, there is the problem of potential long chains. For example, let X, Y and 
Z be three proteins. In this example let’s consider that there is no coverage 
cutoff. X contains domains { A,B,C} . Y, domains { C,D,E}  and Z the domains 
{ D,E,F} . The graph subjacent to proteins X,Y and Z is isomorph to P3, however 
X and Z share no domains. These chains could be arbitrary long. 

 

Figura 1 Long chains. A sample family in the superior side and members 
incorrectly assigned to this group by single linkage clustering 

 
 

3.3. Cliques (Complete Linkage Clustering) 
 



During the realization of Agrobacterium tumefaciens genome project [5] was 
been observed that use only connected components to determine the families 
was a criterion maybe too permissive. It was decided to find a new criterion 
based in cliques. The new methodology proposed by Almeida [6] uses two CS’s 
that will be called here CS1 and CS2. Both these criteria are based in thresholds 
values to the statistical significance and alignment cover, been CS1 more 
restrictive than CS2. Starting from CS1, a graph G is constructed and all its 
maximal cliques are determined. The families are determined in the next step, 
through the union of each maximal clique C with the proteins that yet do not 
belong to any family and that present a satisfactory similarity (in agreement with 
CS2) with some member of C. 

In the case of, in the second step, a protein presenting similarities with 
proteins of distinct cliques, an untie algorithm decides in which family this 
protein must be included. Therefore, the result families are disjointed. The graph 
G subjacent to this process is undirected and without weights in the edges. 

This method, in spite of seems to be stronger than the previous, too presents 
problems. Although the clique idea is intuitively good, it is used only in a partial 
way. The method, by obligate that a gene belong to only one family, take some 
relatively arbitraries decisions, what can generate incorrect and incomplete 
families. 

 
3.4. Componentes Biconexos 

 
This approach was introduced by KIM [7]. The algorithm is based on bi-
connected components and articulation points. Proteins are compared all against 
all in order to obtain some similarity measure and form an undirected weighted 
graph.  Biconnected components of this initial graph are candidates to become 
families and the articulation points are marked as possible points of union 
between families.  

The process is repeated with several threshold values in a range and the bi-
connected components and articulation points are marked for each of these 
values. Thus, the classification resultant is basically hierarchical and can lead 
well with cohesive and sparse families. 

 
3.5. Componentes Fortemente Conexos 

 
This is the approach followed by YONA et al [8]. The usual similarity measures 
are obtained and are used to create a directed weighted graph, where edges are 
directed from query to subject (as returned by BLAST).  

Edge weights are computed according to the rank in the hit list, rather than 
the raw similarity score. For a given (query) protein, the edge weight in an edge 
that links it to one of its BLAST hits is a function of the ranking of that hit in the 



hit list. Families are taken to be the strongly connected components in the 
resulting graph. 

 
3.6. Tribes-MCL 

 
The emphasis of this method is on algorithm MCL – Markov Clustering [9]. The 
similarity criteria used is simple: proteins are compared all against all with 
BLAST and edges are weighted with –log(e-value). The underlying graph is 
thus directed. 

Despite the simplicity of this similarity criteria, the algorithm MCL can still 
detect homology relationships. The algorithm represents a process that captures 
the concept of random walks in a graph and does it deterministically. This is 
achieved representing the graph as a Markov Matrix and establishing the 
algebraic operators that transform the matrix probabilities. 

Edge weights are understood as probabilities of visiting them. For each 
application of the algebraic operators, probabilities of regions of greater flow   
are increased and probabilities of regions of less flux are diminished. After 
many iterations, algorithm tends to find natural groups of the protein space. 
Process is repeated until groups remain unchanged.  

 
3.7. OrthoMCL 

 
This technique was developed focusing on eukaryote proteins. Just like Tribes-
MCL, the OrthoMCL [10] algorithm use MCL in the last phase. However, it 
differs from Tribes-MCL in the way edges are weighted.  

In OrthoMCL, from the initial all against all comparison, hits whose e-value 
is greater than 1E-5 are filtered out. Then the method identifies putative 
paralogy and orthology relationships. According to LI et al [10], two 
ortholog/paralog sequences are reciprocal best hits. Paralogs are those proteins 
that belong to the same organism and that are more similar to each other than to 
any protein in the grouping belonging to another organism.  

The underlying graph only contains edges of putative orthologs and 
paralogs, according to the criteria described. Edges are weighted with –log(e-
value), without any coverage requirement for the alignments. 

Then there is a phase of normalization of edge weights. In order to 
eliminate the interference of the high score of recent paralogs in relation to 
ortholog edges, weights are normalized by the score of all orthologs between 
two organisms (or by the weight of all recent paralogs in the same organism). 

Finally, the underlying directed weighted graph is represented as a 
symmetrical matrix that is fed to the MCL algorithm.  Then MCL finds 
groupings that will be output as the protein families. 
 



Table 1 Graph based protein clustering methods and theirs main 
characteristics 
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Xylella fastidiosa N N 
Connected 
components 

N N Y Lower 

A. tumefaciens N N Cliques Partial N Y Lower 

Gbag N N 
Biconnected 
components 

Y Y N Lower 

Protomap Y Y 
Strongly 

connected 
components 

Y N Y Lower 

COG N Y K3 N/D - - Higher 

Tribes-MCL Y Y 
Markov 
Clusters 

- N Y Lower 

OrthoMCL N Y 
Markov 
Clusters 

- N Y Lower 

NCUT Y Y Cuts Y N Y Lower 

 

4. Evaluation criteria 
 
In the former section, we define the problem in a general aspect. Some variables 
were left behind. Most protein clustering methods differ in the way they treat 
them. 

Some variables are the similarity criteria (SC), presence or absence of 
oriented edges of the graph G, the graph structure of the families and disjunction 
or not of the output families. This work also shows how different approaches in 
the literature treat these questions.  

Generally, all methods deal with a compromise between homogeneity and 
separation. Families should be intrinsically cohesive and extrinsically separated 



from others families and there are some metrics (presented in section 5) that can 
evaluate this compromise. 

We use HAMAP [11], a well-formed and specialist-validated protein family 
set to check how these metrics can recognize good families or orient an 
automatic classification method. In order to evaluate how the many protein-
clustering methods available in the literature perform, we have input to them 
proteins pertaining to some special HAMAP families.  

In order to make our benchmark, we have tried to choose HAMAP protein 
families that are not so separated from each other. To accomplish this task, we 
have mounted an undirected graph G where each vertex represents an original 
HAMAP family and each edge (u,v) indicates that there is at least one blast hit 
between one protein in family u and one protein in family v. Figure 2 shows 
graph G.  

 

Figura 2 HAMAP families. Each vertex represents a family. Edges 
represent blast similarities between members of adjacent families 

We have included in our reference set (RS) proteins from biconnected 
components of G whose families are disjoint.  

This has resulted in 2708 proteins from 73 original HAMAP families, 
including homologs from 419 species. 



With this RS, we are able to establish metrics to evaluate how well protein-
clustering methods behave on reconstructing the original HAMAP families. 
These metrics will be presented in section 5. 

In order to normalize the way metrics are obtained, the similarity graph is 
constructed doing all vs all comparison with blast. Edges are weighted with –
log(e-value). Edges with weight less or equal than 2 are removed from the 
graph. 
 
5. Metrics 
 
In this section we will describe the three kinds of metrics used in this work. 
First, we will present metrics used for evaluating individual groups. Second, we 
will show metrics used for evaluating a solution, i.e. the whole grouping of 
proteins outputted by a method. Third, we will establish metrics to compare one 
solution (given by a method) to one set of well-formed and manually validated 
families.  

Almost all metrics in the first and second subsections are pure mathematical 
concepts that evaluate general graph clustering. Since our problem is biological, 
we may test which of those metrics are promising to separate good protein 
groupings from bad ones. In the third section, metrics can directly map the 
biological meaning desired. 

First, we may state the nomenclature used. Let G= (V,E) be a connected and 
undirected graph. Let m=|E|, n=|V| e C= (C1,...Ck) a partition of V. We call the 
set C a clustering and call each inducted subgraph of G by Ci a cluster.  For m(C) 
we denote the size of the subset of E formed by edges internal to some cluster 
(intra-cluster edges). Additionally we define n(Ci) as the number of vertices in a 
cluster.. 
 

5.1. Metrics for evaluating individual groups 
 

5.1.1. Completeness 
 
Completeness was proposed by [12] and indicates the fraction of the sum of 
edges of the weights of the edges internal to a given Ci by the maximum 
possible sum of edges weights wmax (when Ci is complete and all edges have the 
maximum possible weight). So, we have: 

Completeness(Ci)=
max
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and k is a constant that indicates the maximum possible weight that can be 
assigned to a single edge. 

Completeness can be directly obtained in O(m) and its computation for not 
weighted graphs is straightforward.  

 
5.1.2. Separation 

 
We can evaluate the separation between a cluster Ci and the remaining graph as 
the fraction of the sum of weights of the edges internal to Ci and the sum of the 
weights of the edges that leave the cluster Ci, normalized by the number of 
nodes in Ci. 
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5.1.3. Diameter 

 
Diameter borrows the concept of graph diameters, that is, the the length of the 
longest shortest path between any two graph vertices of a graph. For not 
weighted graphs, diameter can be defined as the number of edges that must be 
traversed in the longest shortest path. For weighted graphs, diameter can be 
calculated as the sum of edges weights in such path, i.e. 
 
diam(Ci)=max d(u,v), u ∈ Ci, v ∈ Ci 
 

where d(u,v) is the sum of edge weights across the shortest path between u 
and v in Ci. 

 
5.1.4. Conservation of the domain architecture 

 
We say that a family conserves the domain architecture if all proteins in this 
family have the same domains at the same order, as found by software 
HMMPFAM. We only consider proteins that have, at least, one domain. 
 

5.2. Metrics for evaluating a solution 
 
For solution, we understand the set of protein families outputted by a method. In 
this section, we show metrics that indicate the intrinsic quality of a solution. 
 



5.2.1. Coverage 
 
Coverage is the fraction of intra-cluster edges by the whole set of edges of G, ie.  

cov(C)=
m

Cm )(
 

It is easy to obtain and it is extensible for weighted graphs. In this case, we 
can define: 
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5.2.2. Internal Consistency 

Internal consistency, proposed by BRANDES [12] evaluates the number of 
correctly interpreted pairs, that is, within all protein pairs, the number of them 
that satisfy one of the following criteria:  
I – v,w ∈ Ci, (v,w) ∈ C 
II – v ∈ Ci, w ∈ Cj, i≠j, (v,w)∉E  

Strictly, performance is the proportion of these correctly interpreted pairs 
within the set of all pairs of nodes. It can be calculated by the following formula. 

intConsistency(C)=
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However, calculating performance following this formula is quadratic on 
the number of nodes. It is easier counting the errors and indirectly calculating 
performance. According to this approach, we have: 
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5.3. Metrics for comparing a solution with a reference set of protein 

families 
 
First, analogous to the set C of protein families in a given solution, we define the 
set R=(R1,R2,…,Rn) of protein families in the reference set. 
In order to count true positives, true negatives, false positives and false 
negatives, we use the following equations. 
 
#NTP = Number of vertices pairs { u,v}  correctly grouped in the same cluster Ci, 

ie. u,v∈Ci, u,v ∈Rj 



#NTN = Number of vertices pairs { u,v}  correctly grouped in different clusters, 
i.e. u,v∉Ci, u,v∉Rj,  plus the number of singletons in C that are also singletons 

in R. 
#NFP= Number of vertices pairs { u,v}  erroneously grouped in the same cluster, 

i.e. u,v∈Ci, u,v∉Rj. 

#NFN= Number of vertices pairs { u,v}  erroneously grouped in different 
clusters, i.e. u,v∉Ci, u,v∈Rj., plus the number of singletons in Ci that are grouped 

with some other vertex in Rj. 
#T= #NTP + #NTN + #NFP + #NFN 

Thus we have: 
True positives= #NTP / #T 
True negatives= #NTN / #T 
False positives= #NFP / #T 
False negatives= #NFN / #T 

 
6. Results and Discussion 
 
We have evaluated two methods, single-linkage clustering and Tribes-MCL, 
with two different parameter set each. Single-linkage clustering was tested with 
cutoffs of 1E-20 (solution A) and 1E-50 (solution B) for the e-value and a cutoff 
of 60% for both query and subject sequences. For Tribes-MCL, we have used 
inflation values of 1.1 (solution C) and 2.0 (solution D). Both methods applied 
were applied to proteins in RS, and results were compared with the original 
HAMAP assignments. Results are summarized in table 2. 

Table 2 Metrics for obtained for the original HAMAP family assignments 
and solutions A,B,C and D 

 HAMAP A-2 B-7 C-9 D-6 
#Families 73 76 165 25 58 

Average Completeness 0.77 0.65 0.64 0.47 0.81 
Average Separation 1.71 24.48 9.37 109.9 11.6 
Average Diameter 1.14 1.36 1.07 2.00 0.56 

Maximum Diameter 2 2 2 3 1 
Coverage 0.76 0.94 0.76 0.99 0.81 

Weighted Coverage 0.92 0.98 0.96 1.00 0.97 
IntConsistency 0.99 1.00 0.99 0.99 0.99 

#families that conserve 
domain architecture 

43 25 55 9 10 

%TRUE POSITIVES - 3.5% 3.0% 3.6% 3.5% 
%TRUE NEGATIVES - 95.3% 95.8% 94.3% 96.1% 

%TRUES - 98.8% 98.8% 97.9% 99.6% 
%FALSE POSITIVES - 1.1% 0.6% 2.1% 0.4% 

%FALSE 
NEGATIVES 

- 0.1% 0.6% 0% 0% 

 



 
7. Future Work and Conclusion 
 
In this work, we have mounted one benchmark. Metrics obtained for this 
benchmark can show us the relationship between the mathematical concepts of 
clustering analysis and the biological reality of protein families. Future work 
includes mounting other benchmarks in order to do a criterious statistical 
analysis on the metrics over well-formed families and identify which of them are 
significant and the target values for good families. Then, we must develop an 
automatic protein-clustering method that targets these values. 

Another expansion of this work is to use the domain architecture 
information in order to improve the similarity graph before applying the protein 
clustering methods. Domain conservation among families show that this 
information can be helpful. 

The main contribution of this work is a step towards a methodology for 
protein clustering methods validation.  
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