
Browsing and Querying in Object-Oriented DatabasesJuliano Lopes de OliveiraRicardo de Oliveira Anido �Departamento de Ciência da Computa�c~aoUNICAMP - BRAZILAbstractWe present a new interface for Object-Oriented DatabaseManagement Systems (OODBMSs). The GOODIES1 sys-tem combines and expands the functions of many existinginterface systems, introducing some new concepts for im-proved browsing in an OODBMS. The implementation ofGOODIES proposes a new approach to database interfacesdevelopment: instead of being strongly dependent of the un-derlying DBMS, GOODIES is based on the main features ofthe object-oriented data model. The system design is basedon an internal model and on an external model. The inter-nal model de�nes the relationships that bind the interfaceto the DBMS. The external model determines the possibleinteraction between the user and the interface system. Thispaper describes the concepts of the design of GOODIES.Keywords: object-oriented databases, graphical inter-faces, direct manipulation paradigm, browsers, query tools.1 IntroductionO�ering database users a suitable interface is an old rese-arch issue, and much work has being done towards that ob-jective. Database Management Systems (DBMSs) are po-werful software tools, with a large and complex set of func-tions. The main purpose of interface systems for DBMSs isto improve access to those functions for the whole database(DB) user community. That, however, is not an easy task,since di�erent kinds of users (application programmers, da-tabase administrators and end-users) expect di�erent, andsometimes con
icting, functions. As graphical workstationsbecome more popular, there is a strong trend to substitutethe traditional DB programming languages by the graphi-cal interfaces, which are more suitable for the interactionbetween the user and the DBMS [MvD91, Shn87, PH91].In this paper we introduce GOODIES, a new system forbrowsing and querying in Object-Oriented Database Sys-tems (OODBMSs). This new system is a multiple window�Research partially �nanced by grant CNPq-Brazil 500869/91-01GOODIES is an acronym for Graphical Object Oriented Data-base Interface with Extended Synchronism .

graphical interface using the direct manipulation paradigm,and supporting multi-media objects. The system combines,in a single tool, the main functions for database browsing atboth schema and data levels. Another important feature ofGOODIES is to be independent from a speci�c OODBMS.1.1 Graphical Interfaces for DBMSs[GGKZ85] presents the ISIS system, a graphical interfacefor the semantic data model. This system permits bothschema and data manipulation. The relationships amongthe objects are displayed as lines that bind the schema clas-ses. Data is displayed in separate windows, one window foreach object's class. Another interface for the semantic datamodel, the SNAP system, is presented in [BH86]. SNAPprovides facilities for schema manipulation and query for-mulation. The schema is presented as a very complex graph,where di�erent geometric �gures are used to represent dif-ferent relationships.A graphical interface for the entity-relationship data mo-del is presented in [RC88]. The system permits navigationand update of both schema and data. The interface auto-matically creates presentations for the entities de�ned in theschema, and the user can modify these presentations. Du-ring navigation, the system operates in two modes: browse,where the user cannot modify the information, and edit ,where update operations are allowed.The PICASSO system [KKS88] introduces a graphicalquery language for DBs. The query formulation is based ona mouse with three buttons. The left button is used to selectattributes; the middle button is used to build predicates;and the right button is used to choose options from thequery processing menu. Thus, PICASSO allows a graphicalde�nition of queries, and the queries de�ned in the systemare very similar to the well-known SQL's query blocks. Anauxiliary tool allows both navigation through the results ofexecuted queries, and formulation of complex queries usingthe results of previous queries.KIVIEW [MDT89] is an object-oriented system that im-proves the access of non-expert users to a DB. It allows na-vigation on both schema and data levels. KIVIEW is a po-werful browsing tool because the user can save informationduring the navigation process, and the saved informationcan be used as a starting point for other navigations. KI-VIEW also allows the simultaneous navigation in objects ofdi�erent classes, through synchronized browsing operations.The LOOKS system is a graphical presentation genera-tor for the OODBMS O2. [Alt90a] describes the primitivesprovided in LOOKS to manipulate the presentations using a



programming language. The LOOKS architecture is presen-ted in the second part of [Mam91]. Besides the LOOK pre-sentation generator, the O2 system has an object-orientedprogramming environment called OOPE [Alt90b]. Amongother functions, OOPE allows: creation, navigation and edi-tion of classes and methods, visualization and edition of theclass hierarchy and ad hoc query execution. The associationof OOPE with LOOKS gives access to the whole set of func-tions of the O2 system, and they are considered a completeOODBMS interface system [BMP+92].Other existing OODBMS interface systems can be ci-ted, although they are not as powerful as the O2 DBMSinterface system. ODEVIEW [AGS90], the interface sys-tem for the ODE OODBMS, allows schema and data ma-nipulation. A special function in ODEVIEW permits thesimultaneous navigation among objects of di�erent classes(synchronized browsing). In [Alm91] it is presented the GS-Designer system, an interface tool that allows the graphi-cal interactive de�nition of classes and relationships for theOODBMS GemStone.1.2 A New Interface for OODBMSsUnlike relational databases, which share exactly the samedata model, OODBMSs are not based on a common for-mal model. Indeed, the object-oriented (OO) data model iscomposed by a set of properties and functions that databaseresearchers consider essential for a DBMS to be accepted asan object-oriented system. Recently, many papers propo-sed basic features that should be present in an OODBMS([ABD+89], [Com90], [Jac91], [Cat91] and [BM91]). The fol-lowing characteristics represent the common points in thesepropositions:1. To have the basic features of a complete DBMS ;2. To support complex objects and object identity;3. To provide encapsulation;4. To support the class concept, and to permit inheri-tance and class hierarchies;5. To allow overloading and late binding of methods;6. To be extensible and computationally complete.Therefore, OODBMSs implement similar features, butthey do not follow an speci�c set of rigid rules. Due tothis diversity of features in OODBMs, interface systems forOODBMSs have an ad hoc design, according to the speci�cimplementation used in the OODBMS for the fundamentalsof the OO data model.The GOODIES system introduces a new approach to theconstruction of interfaces for OODBMSs. Discarding theidea of a strong relationship between the OODBMS imple-mentation and the process of interface development, GOO-DIES's design was directed by the essential features of theOO data model, identi�ed above, independently of a speci�cimplementation of these features [Oli93].This new approach to OODBMSs interface developmentpresents some advantages in comparison to the previous ap-proach. First, it permits the validation of the basic featuresthat de�ne the OO data model. A second advantage is thatit permits to verify whether a given DBMS provides these fe-atures, that is, the new approach can be used to verify if theDBMS is object-oriented. Finally, the new approach facili-tates the adaptation of the interface system to a DBMS thatimplements, in any way, the basic object-oriented features.

At the present stage, the GOODIES system implementa-tion only provides reading access to the information stored inthe DBs. Thus, the system cannot be considered a completeDBMS interface system. However, the GOODIES systemdesign was conceived with the objective of being extensible.So, the information update capability can be incorporatedto the system, without changing its external model (user'sview of the system), through a reduced number of modi�-cations on the internal model of the system (the way thesystem dialogs with the underlying DBMS).The following sections describe the design of this newinterface system. Section 2 presents some concepts of theinternal model of GOODIES. In section 3 we describe theway the information is represented in the system. Section 4shows the interaction mechanism between the user and theinterface. In section 5 we explain the behavior of the browseand query operations. Section 6 introduces some functionsthat improves the system utilization. The last section com-ments the system implementation and relates it to previouswork.2 GOODIES ConceptsA OODBMS can control many DBs, and GOODIES de�nesa DB as an schema and a set of data. The set of datarepresents the DB objects, while the schema is representedby the inheritance and composition graphs, and by a set ofmethods.2.1 Inheritance GraphThe inheritance graph is a directed acyclic graph whose no-des represents all the schema classes. Each node is labeledwith a class name, and identical class names are not allowedwithin the same schema. The nodes are also associated to alist of methods de�ned for the class they represent.There are two kinds of edges in the inheritance graph:specialization edges and generalization edges. The genera-lization edges are directed from the subclasses to the su-perclasses, and they represent a generalization relationshipbetween a subclass (origin of the edge) and a superclass (des-tine of the edge). In the same way, specialization edges aredirected from the superclass to the subclass, representing aspecialization relationship. It is easy to see that an edgelinking two nodes of the graph has always a complementaryedge of di�erent kind and opposite direction.GOODIES internal model supports the multiple inheri-tance concept, since a node in the inheritance graph mayhave an arbitrary number of both kinds of edges. Follo-wing the basic features of the OO model, a specialized classinherits attributes and methods from its superclasses.2.2 Composition GraphThe composition graph is a directed graph that may containcycles. There are three kinds of nodes in this graph: classnodes, constructor nodes and attribute nodes. A class nodeis labeled with the name of the schema class it represents.For each schema class there is one, and only one, class nodein the composition graph.Constructor and attribute nodes represent the class com-position, and they are subordinated to class nodes. An attri-bute node is labeled with the type of the attribute it repre-sents. It is possible to have duplicated labels for attributenodes. The possible values for attribute labels are: Simple,Text, Image and Sound. Sub-objects are represented in the



composition graph as references to class nodes. Constructornodes are labeled with the type of constructor in the GOO-DIES internal model. There just two types of constructor inGOODIES: Tuple, used for collections of heterogeneous ele-ments, and List, used for collections of elements that belongto the same type (for instance, sets and list of elements).An edge in the composition graph connects a compositornode to a component node (it is directed from the �rst tothe former), and it is labeled with the name of the attributede�ned in the class type. Edges connecting nodes that aresubordinated to the same class node can not have identicallabels.A class node origins an edge for each attribute de�ned inthe class type. Similarly, a class node has an incident edgefor each attribute whose type is the represented class. Asubordinated node may reference its class node, and this isthe way GOODIES allows an object to have sub-objects ofits own class.A constructor node of type List has one, and only one,incident edge, since each list node is subordinated to a uni-que class node. This constructor origins also one, and onlyone, edge which points to a node that de�nes the type of theelements of the list. As we have already said, the GOODIESlist constructor is used for both list and set constructor ofthe OO model.For the same reason described for the list constructor, aconstructor node of type Tuple has only one incident edge.However, a tuple node may origin an arbitrary number ofedges (one edge for each element of the tuple). Each of theseedges points to a node that de�nes the type of the element.The attribute nodes represents the atomic attributes ofGOODIES, and they can not give origin to edges. Thesenodes always have one incident edge, labeled with the nameof the attribute whose type is de�ned by the attribute node.2.3 Primitive OperationsGOODIES interacts with a OODBMS through primitiveoperations. The semantics of these operations are de�nedby GOODIES, while their implementation is dependent ofthe OODBMS. There is a module in GOODIES that is res-ponsible for the primitive operations, and it is the only mo-dule that is dependent of the underlying OODBMS. It isimportant to understand that only the implementation ofthe operations is variable; their semantics are speci�ed inthe GOODIES internal model, and are independent from aspeci�c DBMS.The primitive operations were designed as a minimum setof functions that should be provided by a OODBMS in orderto grant the user access and control of the DBs. In fact, theprimitive operations may be seen as textual queries aboutthe schemas and about objects in the DBs. The primitiveoperations de�ned by GOODIES are:Get-Schema: the objective of this operation is to obtainfrom the OODBMS the list of classes de�ned in a gi-ven DB schema. To reach this objective, the operationreceives a DB name as a parameter. The answer pro-vided by the OODBMS is interpreted and stored ininternal data structures of GOODIES. The result ofthe operation is presented to the user through the DBwindow (�gure 2).Get-Class: GOODIES uses this operation to get the com-plete description of a given schema class. The classand the schema are received as a parameter of theoperation. The class description is composed by the

Figure 1: Directory Windowclass type (or composition) de�nition and by the listsof superclasses, subclasses, methods and objects thatbelong to the class. The result of this operation is usedto build the inheritance and composition graphs, andthese informations are displayed in the class window(�gure 3).Get-Object: This operation has three parameters, that arethe schema, the class and the object identi�er (oid)of the desired object. A query is formulated to theOODBMS, which should answer with the values of theattributes of the given object. Using the inheritanceand composition graphs, GOODIES parses this answerand presents it to the user through the object window(�gure 4).It is obvious that both the command and the format ofthe answer are dependent from the underlying OODBMS.Thus, to adapt GOODIES to a particular OODBMS, it isnecessary to: a) determine the syntax of the OODBMS com-mands that corresponds to the semantics de�ned by GOO-DIES; b) adapt the answer interpretation function of GOO-DIES to the format used in the OODBMS. This adaptationprocess is fully described in [Oli93].
Figure 2: DB Window



Figure 3: Class Window3 Information VisualizationIn GOODIES, all kinds of information are displayed throughwindows. Windows are composed by three parts: header,body and footer. The window title (that is, the identi�-cation of the kind of information displayed in the window)appears in the header. The window body contains the con-trols and the representations of the information associatedto the window. The window footer is split in two parts:left and right. In the right part it is presented the nameor identi�cation of the DB component that is representedin the window's body. The left footer is reserved for sys-tem messages related to either the presented data or to theoperations performed on the window.The system has four types of base windows, where theinformation about schema and data (objects) are displayed.There is also a set of auxiliary windows, which allows theuser access to the complete system functionality. GOODIESallows an arbitrary number of windows to be displayed si-multaneously.3.1 Schema VisualizationThree base windows contain information about schemas: thedirectory window , which provides browsing facilities at DBlevel; the DB window , which presents the list of classes thatare de�ned in a given DB schema; and the class window ,which presents the items that de�ne a given schema class.The directory window provides access to the existingDBs. This window allows navigation on the �le system inorder to select DBs. The user can visualize di�erent DBsat the same time, since each DB selection in the directory

window opens the DB window corresponding to the selec-ted DB. Existing DBs in a directory are visualized througha list in the directory window. This list contains also thesubdirectories of the visualized directory. Figure 1 shows adirectory window, and �gure 2 presents the DB window thatcontains the classes de�ned in the schema of the system DB.The third base window for schema visualization is theclass window. This window presents the de�nition of a classin a DB schema, and it is composed by the following items:� Type: a textual description of the class type de�ni-tion, that is, the composition of the instances (objects)of the class;� Superclasses: a list of superclasses from which thedescribed class inherits attributes and methods;� Subclasses: a list of subclasses that inherit the attri-butes and methods de�ned for the described class;� Methods: a list of methods associated to the descri-bed class;� Objects: a list of object instances that belong to thedescribed class, that is, the class extension. If the un-derlying DBMS supports named objects, the objectsnames appear in the list. Otherwise, the list will con-tain a sequence of items [object 1 , object 2 , ..., objectn]. Each of these items represents a single object inthe class extension.Figure 3 shows a class window that displays the classProgram of the DB presented in �gure 2. The sliders on theleft of the list items allow the resizing of the representationof a given list item with respect to the other items. Thesystem automatically changes the size of the items in such away that the complete set of items continue to be displayedin the available space. This mechanism is useful to showmore information on important items.3.2 Data VisualizationThe three base windows described in the previous section(directory window, DB window and class window) are usedto visualize and to navigate on the schema de�nitions of thedi�erent DBs controlled by an OODBMS. The fourth basewindow permits the execution of these operations on data,i.e., on the objects stored in the DBs.The object window contains the values of the attributesthat compose an object instance, according to the class com-position description presented in the class window. Figure 4shows an object of the class Program, presented in �gure 3.The objects attributes are divided, according to theirrepresentation in the system, in the following groups:1. Simple Attributes: these attributes are those whichcan be displayed as character strings containing atmost 128 characters, and that are atomic, that is, theyare not composed by other elements. Numbers (real,integer), boolean values and character strings 2 areexamples of simple attributes. These attributes arerepresented directly in the object window. The attri-butes objective and identi�cation of �gure 4 are simpleattributes.2character strings are not considered to be composed by elementsof type character because, in this case, the individual characters donot have their own semantic meaning



Figure 4: Object Window2. Textual Attributes: in this group are the atomic attri-butes, as de�ned above, which cannot be representedwith less than 129 characters. These attributes aredisplayed in auxiliary text windows, associated to theobject window that contains the textual attribute. Fi-gure 5 shows the representation of the textual attributeprogram body, of the object presented in �gure 4.3. Images: an image is a sequence of bytes that de�nesthe graphical representation of a picture. Images arepresented in auxiliary graphical windows, associated tothe object window that contains the image attribute.Figure 6 shows the image window that correspondsto the �rst element of the windows list of the objectpresented in �gure 4.4. Sounds: sound attributes are applied to audio recor-dings, whose representation is realized by reproducingthe sound stored in the attribute. The sound andimage attributes provide facilities for storing and ma-nipulating ofmulti-media objects, which are supportedby the majority of existing object-oriented systems.5. Lists: collections of elements (obtained through theconstructors set and list , for instance) that belong tothe same type are represented by a list attribute. Theelements of a list may be either simple or complex.Simple attributes are displayed directly in the objectwindow as list items. If the elements of the list are not

Figure 5: Text Windowsimple attributes, the items of the list presented inthe object window work as references to the attributesthat must be presented in auxiliary windows. It isimportant to note that the list attribute of GOODIESdo not correspond directly to the type constructor listof the OO model, since that attribute is also used torepresent sets of elements.6. Tuples: tuple attributes represent the aggregation ofelements of heterogeneous types (in general these at-tributes are de�ned through the constructor tuple).Thus, tuples demand the creation of an auxiliary win-dow in order to display its contents, since each tupleelement may belong to any of the de�ned attributetypes.7. Sub-objects: these attributes are used to represent theconcept of complex object . According to this concept,an object can be composed by an arbitrary set of otherobjects. The sub-objects are displayed in object win-dows associated to the base object window. There isno di�erence between the construction and presenta-tion of sub-object windows and the construction andpresentation of object windows, except that the sub-object window is associated to the base object win-dow, whereas the base object window is associated tothe object's class window. This subtle di�erence is thebase of the synchronized browsing capability describedlater in this text.The auxiliary windows associated to the object windowfollows the same scheme for attribute representation used inthe object window. Thus, it is possible to represent an arbi-trary number of nested objects and values, and this satis�esthe directives for objects construction in the OO data model[ABD+89]. The attributes that must be visualized in di�e-rent windows are easily identi�ed, because their referencenames are ended with ellipses (\..."), as shown in �gure 4.4 Interaction with the userThe direct manipulation paradigm [Shn83] was adoptedas the main mechanism for interaction with the user. Thismechanism simpli�es the input actions required from theuser in order to execute an operation, and reduces both theamount of input errors and the user typing e�ort.



Figure 6: Image WindowThe coherence between actions and results was a majorguideline of the system design, as it guarantees that the�nal user will have a quick understanding of the interfacefunctionality.Besides assuring coherence, the user interaction mecha-nisms of GOODIES also provide 
exibility for the user tode�ne the environment where he is going to work. GOO-DIES allows the user to set up his workspace, through fa-cilities to resize, reposition, open, close, create and destroywindows. The system neither limits the number of openedwindows (in fact this number is limited by the Window Ma-nager and by the available memory in the equipment), norimposes any kind of restriction about size or positioning ofthe windows.5 Mechanisms for Browsing and QueryingUp to this point we presented the available windows in theGOODIES system. The next sections describe how thesewindows are used to visualize di�erent aspects of schemaand data contained in a OODBMS.5.1 Schema Level NavigationA working session in GOODIES is initiated with the direc-tory window, which allows the user to choose the desiredDBs. The selection of a DB causes the presentation of a DBwindow, containing the list of classes de�ned for the selectedDB.Once obtained a DB window, the user can select theschema classes that he wants to visualize from the DB win-dow classes list. By selecting classes in this list the userobtains the corresponding class windows, which contain thecomplete description of each schema class (section 3.1 pre-sents and explains the contents of the class window).In a similar way, starting from the class window, theuser can proceed browsing the schema either selecting clas-ses from the subclasses and superclasses lists, or selecting

methods from the class methods list. It is also possible tostart browsing over the class objects, through the selectionof instances in the class objects list.The selection of superclasses or subclasses in the classwindow represents exactly the same operation of selectionclasses in the DB window. These operations cause the cre-ation and presentation of the class windows for the selectedclasses.The selection of a method from the class methods listtriggers the process of creation and presentation of an auxi-liary window, the method description window. This windowcontains the textual description of the selected method, andeach method selection causes the creation of a new methodwindow. Figure 7 shows the presentation of a method of theclass exhibited in �gure 3.5.2 Data Level NavigationThe data level navigation starts with the selection of anobject from the objects list of a class window. This operationcauses the presentation of an object window for the selectedobject, and each new selection in that list causes the creationof a new object window. Thus, the user can work with manyinstances of the same class simultaneously.Sequencing operations are available to provide access todi�erent objects through a single object window. These ope-rations are activated by the next , previous and �rst buttonsof the object window. The next button updates the contentsof the object window with the value of the next object inthe class objects list.The previous button has an analog e�ect, except thatinstead of using the next element, it uses the previous ele-ment in the class objects list. The �rst button causes thepresentation of the �rst element of the class objects list, nomatter what object is currently being visualized in the ob-ject window.It is worth noting that the sequencing operations nextand previous see the class objects list as a circular list, in



such a way that the activation of next on the last elementof this list causes the presentation of the �rst element, andthe activation of previous on the list's �rst element exhibitsthe last element of the list on the object window.5.3 Query FacilitiesUp to this point we described the basic mechanisms for na-vigation in GOODIES. These mechanisms are also presentin many other existing database interface systems. This sec-tion introduces the additional capabilities that improve thebrowsing power of GOODIES, and which can be regardedas a simpli�ed querying process.It is important to distinguish at this point the adop-ted terminology: browsing (or navigation) is the processof sequential visualization of information of a speci�c type;querying is the process of selecting and restricting infor-mation, in such a way that only the explicitly demandedinformation is retrieved from the DB and presented to theuser.5.3.1 PredicatesThe �rst query facility available in GOODIES is the formu-lation of predicates. The Props menu in the object windowhas a \predicate..." option that creates an auxiliary windowassociated to the object window. This auxiliary window isthe predicate window, where the user can de�ne predicatesthat are applied to the object presented in the associatedobject window. A predicate is composed by three elements:Attribute: An attribute of the object displayed in the ob-ject window for which the predicate window was crea-ted;Operator: Either a comparison operator (=;<;>;�;�; 6=)or a set operator (�;�);Referential: Either a value or an attribute of an objectpresented in the user workspace. If the referential isan attribute, its type must be compatible with the typeof the �rst element of the predicate.A predicate can also be composed by the association ofother predicates, through logical connectors (And, Or) andthe logical negation operator (Not). Parentheses can be usedto specify a resolution order for the composed predicates.Once the predicate is de�ned by the user, the semantic ofthe sequencing operations for the associated object windowis modi�ed. The activation of next will not �nd the next
Figure 7: Method Window

element of the class objects list, but the next element of thislist that satis�es the de�ned predicate. The same behavioris adopted by the previous operation, that searchs the listin the reverse order, and by the �rst operation, which �ndsthe �rst element, starting from the beginning of the list, thatsatis�es the de�ned predicate.5.3.2 SyncronizationAnother query facility provided by GOODIES is the synch-ronization of object windows. Since an object window canhave references to other objects (sub-objects), the act ofopening an object window through these references createsa synchronization link between the complex object windowand the sub-object window. Each reference to a sub-objectcan have many associated windows, forming a synchroniza-tion tree. The synchronization mechanism guarantees thatany sequencing operation applied on an object window is re-
ected in the whole sub-tree whose root is the object windowon which the sequencing operation was performed.A synchronization link creates a relationship of hierar-chy between two object representations. However, a synch-ronization link cannot be created between any two objects.The synchronization relationship must follow the composi-tion de�nition of the object's class. An object window canbe the owner of another window in the synchronization treeif, and only if, the object displayed in the owner windowhas an attribute that references the object displayed in theowned window.The synchronization mechanism can be better illustratedthrough an example. Let A be a class with components Band C. Supose that the object A1 of class A is presentedin an object window. This window shows that A1 has sub-objects that belong to classes B and C. If the user selects thesub-object of type B, the system creates an object windowcontaining the object B1. In a similar way, the selection ofthe sub-object of type C causes the creation of an objectwindow for the object C1. As a result of this process, it iscreated the synchronization tree showed in �gure 8.Let A2 be the next object of A, obtained through theapplication of the next operation in the object window ofA1. At the same time of the selection of this sequencingoperation, due to the synchronization tree, the sub-objectsof A2 (respectively B2 of type B and C2 of type C) willbe displayed in the two remaining windows, automatically(�gure 9).Therefore, a single sequencing operation can update thepresentation of several objects, through the synchronizationmechanism. It is important to note that the predicates de�-ned for each object window continue to be veri�ed when theobject window is synchronized with other windows. The as-sociation of predicates with the synchronization mechanismprovided by GOODIES is similar to a query processing fa-cility where the user selects and restricts the required infor-mation. Only graphical query tools provide this facility, andnone of the systems cited in section 1.1 have such a powerfulmechanism for browsing.6 Other FacilitiesBesides the facilities for navigation and querying presentedabove, GOODIES provides many facilities that were deve-loped in order to allow the user to customize the systemaccording to his needs. These facilities are also importantfor adjusting the features of the system to accomplish somespeci�c tasks.



Figure 8: Synchronization Tree

Figure 9: Synchronization Tree after next operation



6.1 Context SavingThe option Save Workspace associated to the Props menuof the DB window executes one of the customization functi-ons available in the GOODIES system. This option tells thesystem to save the current workspace where the user is wor-king. After saving his workspace, every time the user opensa GOODIES section, the system automatically presents thecontext that the user was visualizing in the moment he ac-tivated the Save Workspace option.The term context is used here to denote the base windows(directory window, DB windows and class windows). Thereason for the exclusion of object windows from the contextis that objects are dynamically inserted in and removed fromthe DBs, whereas schemas are not expected to be modi�edoften.6.2 Visualization LevelAccording to the inheritance concept , the de�nition of aclass inherits methods and attributes from its superclasses.Besides that, the inheritance hierarchy may have an arbi-trary depth. If multiple inheritance is supported, a classinherits methods and attributes from all its superclasses.In this way, the de�nition of a class type may contain fewattributes and methods de�ned for the class, with a largenumber of inherited attributes and methods. It may be thecase that the user does not want to see the complete set ofattributes and methods, but only part of them. GOODIESo�ers facilities to de�ne the visualization level of the classhierarchy. The user can select the desired visualization levelthrough the following options:Display Superclasses: an auxiliary window containing thelist of superclasses of a given class, and the user se-lects from this list the superclasses whose attributesand methods should be displayed. This selection up-dates the contents of the class window items Type,Superclasses and Methods, as well as the attributesvisualized in the object windows that belong to theclass.Display Subclasses: in a similar way, the user can select thesubclasses that he wants to visualize, starting froma given class window. The unselected subclasses areeliminated from the class subclasses list of the classwindow, and the instances of those subclasses are eli-minated from the class objects list.6.3 Attribute SelectionIn an object-oriented database, the type de�nition of a classmay contain an arbitrary number of attributes. Choosingthe class hierarchy visualization level is often not enough to�ll the users needs, since a class that has no superclassescan still have an excessive number of attributes explicitlyde�ned for it.GOODIES allows, through an auxiliary window associa-ted to the object window, to choose the attributes to be dis-played. The attribute selection window contains a list of allattributes de�ned for (and inherited by) the object, accor-ding to the current visualization level. Only the attributesselected in the attribute selection window are presented inthe object window.In a similar way the user can choose the items that arepresented in a class window. As it was observed in sec-tion 3.1, the items that compose the class window are �ve:

the textual de�nition of the class composition (Type) andfour lists ((Superclasses, Subclasses,Methods and Objects).7 ConclusionWe presented the design of the GOODIES system. The basicmechanisms for interaction with the user was described, andit was noted that many of the system functions were adap-ted from previously developed interface systems. In fact,one of the main advantages of the GOODIES system is toprovide the best browsing functions from previous databaseinterfaces assembled in one single tool.The window construction style follows the OpenLook[Sun90] guidelines, and the concept of dividing a complexobject representation in several windows was taken from[MSB90]. According to that work, the natural trend to de-pict complex information in a single representation is notalways possible, besides being frequently ine�cient. In ge-neral, it is better to display complex information (for ins-tance, objects in a OODB) in more than one presentation,where each presentation is tuned to a particular aspect ofthe global information.The basic GOODIES navigation mechanism was inspi-red on the database interface system described in [RC88],though the data model of this system is the Entity-Relation-ship, whereas GOODIES uses the object-oriented data mo-del. The idea of synchronized browsing was strongly in-
uenced by the KIVIEW system concepts, introduced in[MDT89].The idea of using predicates to improve the navigationprocess is used in graphical query systems, and the GOO-DIES de�nitions of predicates is very similar to the conceptsused in the PICASSO [KKS88] system, a graphical querysystem for the universal relation data model.Finally the items that de�ne a class window are similarto those used in the OOPE system, described in [Alt90b]. Itshould be noted, however, that none of the interface systemsfrom which GOODIES inherited features are independentfrom their respectives DBMSs. This important characteris-tic, the independency from an speci�c DBMS, di�erentiatesthe GOODIES system from the interface that in
uenced itsdesign.At the present moment, all the functionality described isimplemented in a prototype that uses a SUN SPARCstationas platform, under the UNIX operating system. The sys-tem applies the graphical resources of the XVIEW toolkit[Hel90], and contains about fourteen thousand lines of codewritten in C++.References[ABD+89] Malcolm Atkinson, Fran�cois Bancilhon, DavidDeWitt, Klaus Dittrich, David Maier, and Stan-ley Zdonik. The Object-Oriented Database Sys-tem Manifesto. In Proceedings of the First In-ternational Conference on Deductive and Object-Oriented Databases, pages 40{57, Kyoto, Japan,December 1989.[AGS90] R. Agrawal, N. Gehani, and J. Srinivasan. Ode-view: The Graphical Interface to Ode. In Proce-edings of the 1990 ACM SIGMOD InternationalConference on Management of Data, pages 34{43, Atlantic City, USA, May 1990.[Alm91] Jay Almarode. Issues in the Design andImplementation of a Schema Designer for an



OODBMS. In ECOOP'91 Proceedings, pages200{218, July 1991.[Alt90a] Alta��r. The Looks Programmer Manual. Techni-cal Report, Gip Alta��r, January 1990. PrintingRevision 1.1, 9/01/1990.[Alt90b] Alta��r. OOPE: The Object-Oriented Program-ming Environment. Technical Report, GipAlta��r, January 1990. Printing Revision 1.1,9/01/1990.[BH86] Daniel Bryce and Richard Hull. Snap:AGraphics-based Schema Manager. In IEEE Pro-ceedings of the International Conference on DataEngineering, Los Angeles, USA, February 1986.[BM91] Elisa Bertino and Lorenzo Martino. Object-Oriented Database Management Systems: Con-cepts and Issues. IEEE Computer, 24(4):33{47,April 1991.[BMP+92] P. Borras, J. C. Mamou, D. Plateau, B. Poyet,and D. Tallot. Building User Interfaces for Da-tabase Applications: The O2 Experience. SIG-MOD Record, 21(1):32{38, March 1992.[Cat91] R. G. G. Cattell. Next-generation Database Sys-tems. Communications of the ACM, 34(10):30{33, October 1991.[Com90] The Committee for Advanced DBMS Function.Third-Generation Database System Manifesto.SIGMOD Record, 19(3):31{44, September 1990.[GGKZ85] Kenneth J. Goldman, Sally A. Goldman, Pa-ris C. Kanellakis, and Stanley B. Zdonik. ISIS:Interface for a Semantic Information System. InProceedings of the 1985 ACM SIGMOD Interna-tional Conference on Management of Data, Aus-tin, USA, May 1985.[Hel90] Dan Heller. XVIEW Programming Manual, vo-lume 7 of The X Window System Series. O'Reilly& Associates, April 1990. Second Printing.[Jac91] Mike S. Jackson. Tutorial on object-oriented da-tabases. Information And Software Technology,33(1):4{12, January 1991.[KKS88] Hyoung-Joo Kim, Henry F. Korth, and AviSilberschatz. Picasso: A Graphical QueryLanguage. Software Practice and Experience,18(3):169{203, March 1988.[Mam91] Jean-Claude Mamou. Du Disque �a le ecran:Gen�eration D`Interfaces Homme{Machine PourObjects Persistants. PhD thesis, Universit�e deParis - Sud - Centre d`Orsay, May 1991.[MDT89] Amihai Motro, Alessandro D�Atri, and Laura Ta-rantino. The Design of KIVIEW: An Object-Oriented Browser. In Larry Kerschberg, editor,Proceedings of the Second International Confe-rence on Expert Database Systems, pages 107{131. The Benjamin/Cummings Publishing Com-pany, Inc., 1989.[MSB90] John Alan McDonald, Werner Stuetzle, and An-dreas Buja. Painting Multiple Views of ComplexObjects. In OOPSLA'90 Proceedings, pages 245{257, Ottawa, Canada, October 1990.

[MvD91] Aaron Marcus and Andries van Dam. User-Interface Developments for the Nineties. IEEEComputer, 24(9):49{57, September 1991.[Oli93] Juliano Lopes de Oliveira. Uma FerramentaGr�a�ca para Navega�c~ao e Consulta em Bancosde Dados Orientados a Objetos. Master's thesis,Universidade Estadual de Campinas - Departa-mento de Ciência da Computa�c~ao, March 1993.[PH91] Thiagarajan Palanivel and Martin Helander.Human-Factors Issues in Dialog Design. Advan-ces in Computers, 33(1):115{171, 1991.[RC88] T. R. Rogers and R. G. G. Cattell. Entity-Relationship Database User Interfaces. In Mi-chael Stonebraker, editor, Readings in DatabaseSystems. Morgan Kaufmann Publishers, Inc.,1988.[Shn83] Ben Shneiderman. Direct Manipulation: A StepBeyond Programming Languages. IEEE Com-puter, 16(8):57{69, August 1983.[Shn87] Ben Shneiderman. Designing the User Interface:Strategies for E�ective Human-Computer Inte-raction. Addison-Wesley, 1987.[Sun90] Sun Microsystems. OPENLOOK - Graphi-cal User Interface Applications Style Guidelines.Addison-Wesley, June 1990. Third Printing.


