
Using the DBV model to maintain versions of

multi-scale geospatial data

João Sávio C. Longo, Lúıs Theodoro O. Camargo,
Claudia Bauzer Medeiros, André Santanchè

Institute of Computing (IC)
University of Campinas (UNICAMP)

Campinas, SP – Brazil

{joaosavio,theodoro}@lis.ic.unicamp.br
{cmbm,santanche}@ic.unicamp.br

December 18, 2012

Abstract

Work on multi-scale issues concerning geospatial data presents count-
less challenges that have been long attacked by GIScience researchers. In-
deed, a given real world problem must often be studied at distinct scales
in order to be solved. Most implementation solutions go either towards
generalization (and/or virtualization of distinct scales) or towards link-
ing entities of interest across scales. In this context, the possibility of
maintaining the history of changes at each scale is another factor to be
considered. This paper presents our solution to these issues, which accom-
modates all previous research on handling multiple scales into a unifying
framework. Our solution builds upon a specific database version model
– the multiversion MVDB – which has already been successfully imple-
mented in several geospatial scenarios, being extended here to support
multi-scale research. The paper also presents our implementation of of
a framework based on the model to handle and keep track of multi-scale
data evolution.

multi-scale, database versions, MVDB model

1 Introduction

A major challenge when dealing with geospatial data are the many scales in
which such data are represented. For instance, national mapping agencies pro-
duce multi-scale1 geospatial data and one of the main difficulties is to guarantee

1Unless specified, this paper uses the term “scale” to refer to cartographic scale.

1



2 BASIC CONCEPS AND RELATED WORK 2

consistency between the scales [SVvO+11]. Most research efforts either concen-
trate on modeling or on data structures/database aspects.

Literature on the management of geospatial data at multiple scales concen-
trates on two directions: (a) generalization algorithms, which are mostly geared
towards handling multiple spatial scales via algorithmic processes, that may, for
instance, start from predefined scales, or use reactive behaviors (e.g., agents) to
dinamically compute geometric properties; and (b) multi-representation databases
(MRDBs), which store some predefined scales and link entities of interest across
scales, or multiple representations within a scale. These two approaches roughly
correspond to Zhou and Jones’ [ZJ03] multi-representation spatial databases and
linked multiversion databases2.

While generalization approaches compute multiple virtual scales, approaches
based on data structures, in which we will concentrate, rely on managing stored
data. From this point of view, options may vary from maintaining separate
databases (one for each scale) to using MRDBs, or MRMS (Multiple Repre-
sentation Management Systems) [FJ03]. MRDBs and MRMS concern data
structures to store and link different objects of several representations of the
same entity or phenomenon [Sar07]. They have been successfully reported
in, for instance, urban planning, or in the aggregation of large amounts of
geospatial data and in cases that applications require data in different levels
of detail [Oos09, GZH+10, PSVZ09]. Oosterom et al. [OS10], in their multi-
representation work, also comment on the possibility of storing the most de-
tailed data and computing other scales via generalization. This presents the
advantage of preserving consistency across scales (since all except for a basis
are computed). Generalization solutions vary widely, but the emphasis is on
real time computation, which becomes costly if there are continuous updates to
the data – e.g., see the hierarchical agent approach of [RD07] or the multiple
representations of [BBB07].

This paper presents our approach to manage multiple scales of geospatial
objects that is based on extending the DBV (Database Version) model [CJ90,
GJ01] to provide support to flexible MRDB structures. As will be seen, our
extension (and its implementation) provide the following advantages to other
approaches: (a) it supports keeping track of evolution of objects at each scale,
and across scales, simultaneously; (b) it provides management of multi-scale
objects saving storage space [CJ90], as opposed to approaches in which evolution
requires replication; and (c) it supports evolution according to scale and to
shape, where the latter can be treated as alternative versioning scenarios.

2 Basic Conceps and Related Work

2.1 MRDB and Multi-Scale Data

Spaccapietra et al. [SPV00] cite that in different scales the objects are usu-
ally represented in different ways, because each scale can have a convention of

2We point out that our definition of version is not the same as that of Zhou and Jones



2 BASIC CONCEPS AND RELATED WORK 3

representation. Objects can appear/disappear or be aggregated/disaggregated,
shapes can be simplified or objects could not appear in some scales.

Relying of this fact, MRDBs (Multiple Representation Database) have been
proposed to solve this problem. These are data structures to store and link
different objects of several representations of the same entity or phenomenon
[Sar07]. There are plenty of benefits to this approach, according to Sarjakoski
[Sar07]:

• Maintenance is flexible, since more specific level updates can be propa-
gated to the lower resolution data;

• The links between objects of different levels of representation can provide
a basis for consistency and automatic error checking;

• MRDBs can be used for multi-scale analysis of spatial information, such
as comparing data at different resolution levels.

According to Deng et al. [DWL08], there are three main variants to link
objects in an MRDB. The first one is called attribute variant and all data are
stored in one dataset. The second variant, named bottom-up variant, considers
the existence of two or more datasets, linked by an additional attribute that
links the objects of the actual scale to those of the immediately smaller scale.
The top-down variant, the third approach, is similar to the second, except for
the fact that the link points to the immediately larger scale.

As an example of implementation, Parent et al. [PSZ06] present Mur-
Mur, an effort to develop a manipulation approach to geographic databases
that have multiple representations. Additional research on MRDB structures
includes Burghardt et al.’s work [BPB10], which shows how to improve the
creation of maps via automated generalization for topographic maps and multi-
representation databases.

Although MRDB structures are used to treat multi-representation problems,
this paper proposes to deal with multi-scale problems, a subset of those related
to multi-representations. Our proposal allows keeping the history of changes
within and across scales, which is not directly supported by MRDBs.

2.2 The DBV Model

The DBV (Database Version) model is an approach to “maintain consistency
of object versions in multiversion database systems” [CJ90]. A DBV represents
a possible state or version of the database [CJ90]. It can be seen as a virtual
view of a database in which multiple versions of objects are stored. This view
shows just one version of each object, so that users can work at each DBV as if
they were handling a constant (monoversion) state of the database. Temporal
versioning is just one type of version. Database researches and, more specifically,
the DBV model, consider a version to be any stored modification of a (database)
state. Thus, a given real world object mat be versioned in time, but also different
simultaneous representations are versions of that object.



3 OUR APPROACH 4

In this model, there are two levels: the logical and the physical. The first
corresponds to the user view of each database state (DBV) and is represented
by the logical versions. The second is represented by the physical versions of
the stored objects.

A multiversion object represents one single entity in the real world – any
attribute (geometry, color, etc) may change; as long as the experts consider it
to be the same entity, it is not assigned a new id. Let us consider a multiversion
object o, e.g. a car, with two different models, one painted blue and other
red. Internally, the database will store the physical versions of o as pv1 and
pv2. Logically, pv1 will appear in one DBV and pv2 in another. The physical
database will have cars of both colors, but from a logical (user’s) point of view,
only one color exists.

Versions are organized in a derivation tree as Figure 1 shows. Each version
is associated with a stamp value (0, 0.1, etc). The derivation tree indicates
how DBVs are derived from each other, thus supporting change traceability.
Derivations always correspond to some kind of update. For instance, Figure 1
shows that DBV d1 (stamp 0.1) is derived from d0 (stamp 0) and that d2
(stamp 0.1.1) and d3 (stamp 0.1.2) are derived from d1. By definition, there is
no data in stamp 0 (root).

Figure 1: Derivation tree of database versions

One of the main advantages of using the DBV approach is that only the
changes must be stored. Data that are not modified are shared from previous
DBVs through semantics of the version stamps. For instance, suppose we have
to access all logical versions related to d2. It is also necessary to look up at
all previous DBVs up to the root – d1, since each version stores only the data
changes. More information about the DBV model can be seen in [CJ90, GJ01].

3 Our Approach

3.1 Overview

We have adopted the DBV model to support multiple scales. Each DBV repre-
sents a particular scale. The set of DBVs, which can be interlinked, correspond
to a multi-scale/multi-representation world.

We extended the model so that, instead of one derivation tree, each scale has
its own tree and all trees evolve together. Besides the version stamp, each DBV



3 OUR APPROACH 5

has an associated scale s. We use the following notation: the DBV d0 of scale
1 as d01. Figure 2 shows four versions (0, 0.1, 0.1.1 and 0.1.2) and n scales.

Figure 2: Example of our approach to maintain versions of multi-scale geospatial
data

Let a real world object o1 be physically stored in a database in two scales,
receiving physical identifiers pv1 and pv2, where pv1 is a polygon and pv2 a
point. Polygon and point are respectively represented in DBVs d11 and d12.
Using this information and the DBV concepts, we have two logical versions
(each in a DBV) represented in the following way: logical version 1 = ((o1,
d11), pv1 ) and logical version 2 = ((o1, d12), pv2 ). In other words, DBV d11

contains the polygon version of o1, and d12 the point version of o1.
Unlike several multi-representation approaches, we do not link explicitly

objects of different scales (e.g., pv1 and pv2 ). Instead, the link is achieved
implicitly by combining stamp and derivation trees, using the concept of logical
versions. This kind of link is similar to the bottom-up variant seen in section 2.1.

A change in a real world that requires creating a new version in scale s
may require changes in other scales. Keeping one tree per scale, moreover,
makes sense because, as remarked by [SPV00], for large scale changes an object
suffers radical changes when scale changes occur and thus there is seldom any
intersection (if any) between DBVs in different scales. To simplify maintaining
consistency across scales, we postulate that all derivation trees grow and shrink
together and have the same topology. This leads to the notion of multi-scale
scenario σ, for short, scenario. Each scenario is formed by all the DBVs with
the same version stamp. For instance, in Figure 2, d01, d02, . . . , d0n form a
scenario, and so do d11, d12, . . . , d1n; etc. In fact, there may be many scenarios.

For managing the versions, we use the propagation algorithm adopted by
the DBV model: only data changes must be stored and unchanged data are
propagated across versions.

3.2 The Model

Figure 3 represents our model in UML. We introduce a new class called Scale,
which has an identifier named sid (scale id). A DBV is identified by the couple
(stamp, sid). The Scale class allows the association of a DBV with different



4 IMPLEMENTATION DETAILS 6

types of scales, where spatial scale is one of them (another example is the tem-
poral scale3). LogicalVersion class associates a MultiversionObject to a DBV. A
physical version of an object underlies a logical version (i.e., it may appear in
some DBV). This is expressed by the relationship between LogicalVersion and
PhysicalVersion classes. The latter is the root of a hierarchy of classes of all
kinds of objects that can be versioned (see Figure 5 later on) and allows the
user to choose which data will be versioned though the OBJTYPE parameter-
ized type. This approach forces the subclasses of PhysicalVersion to provide
the data to be versioned. If a multiversion object o does not appear in DBV d,
we represent this situation setting the PhysicalVersion as null. A DBV has one
parent and – by a derivation process – one or more children.

Figure 3: Our basic model in UML

The model considers the following operations: (a) Create, modify and delete
a multiversion object and its physical versions; (b) Create a new Scale (which
will create a new tree); (c) Create or remove a DBV (affecting the trees); (d)
Access a DBV (gathering the relevant objects of interest).

4 Implementation Details

4.1 Overview

We chose to implement our framework in an object-relational database due its
widespread adoption and to its support of geospatial features. We developed
an API4 on top of the PostGIS5 spatial database extension for PostgreSQL6.
Our implementation uses the Java programming language, Java Persistence API
(JPA)7 and Hibernate Spatial8 for geographic data object/relational mapping.

Figure 4 shows the architecture of the API, divided in three layers: Domain
Data Mapping, Handlers and Controller. The Domain Data Mapping layer
implements the database for the model of Figure 3, mapping Java objects into
the underlying DBMS. The Handlers layer access the physical storage. This

3This paper is restricted to spatial aspects.
4http://code.google.com/p/dbv-ms-api
5http://postgis.refractions.net
6http://www.postgresql.org
7http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
8http://www.hibernatespatial.org



4 IMPLEMENTATION DETAILS 7

layer is inspired in the DAO (Data Access Object)9 pattern, to which we added
specific methods of our model. There are five handlers, each of which related to
an entity of the Domain Data Mapping layer. The Controller layer is accessed
by applications to select the DBV to use and to perform operations on.

Figure 4: Architecture of the API

4.2 Using the API

This section shows the steps for an application A to use the API to create
multi-scale databases.

Step 1 - Create subclasses of PhysicalVersion . First of all, it is nec-
essary to create the schema, i.e., subclasses of PhysicalVersion, binding the
appropriate parametrized type, which will indicate the OBJTYPE to be ver-
sioned. Figure 5 shows two examples of subclasses of PhysicalVersion. Both
have the same attributes, but different versioned data (because of the differ-
ent binding parametrized type). The GeometryPV subclass is versioning only
the spatialObject attribute while SpatialPV subclass is entirely versioned. Each
subclass created by the user will represent a different table in the multiversion
database.

Step 2 - Add data. In order to add new data, the first step will be to
select a specific version stamp of a DBV. Here, A inserts multiversion objects
and their physical versions. A MultiversionObject class has three attributes:
oid, title and a list of PhysicalVersions. The first is the identifier, the second is
some title which identifies the object in the real world, and the third represents
the associated physical versions plus their scales. Also, it is necessary to define
the spatial scales to be available. Every time a Scale is added, a new derivation
tree is created (by creating a root DBV). A Scale class has three attributes:
sid, type and value. The first is the identifier, the second represents the type of
the scale: spatial, temporal, etc, and the third attribute is the value associated
to the type. For instance, for spatial scales, the value contains their size (e.g.
1:10000).

9http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html



4 IMPLEMENTATION DETAILS 8

Figure 5: Examples of subclasses of PhysicalVersion

Step 3 - Perform operations. Once steps 1 and 2 are performed, appli-
cations can invoke operations on objects and DBVs, via invocation of methods
of the Controller layer, e.g., adding, removing and updating the logical ver-
sions, by working in a scale at a time. Now, suppose we have already done the
changes and we want to make a new version of them. When we create a new
DBV from the current, the changes are saved. Subsequent versions can be built
by changing the logical versions and creating new DBVs.

Consider Figure 6, where the roots (stamp 0) appear for scales 1:10000,
1:20000 and 1:50000. This example concerns urban vectorial data, and the
Figure illustrates a given city section. The first version from root (stamp 0.1)
shows the initial state of the section represented in the three scales. Version
0.1.1 and 0.1.2 show evolution alternatives in that section (either prioritizing the
horizontal road, or the vertical road). The geometries in dotted lines represent
the propagated data.

Figure 6: Multi-scale versioning problem example

Internal details appear in Figure 7. Part (a) shows the multiversion objects
and their physical versions. Part (b) shows the physical versions and their geom-
etry. Finally, the logical versions and their relationship with physical versions
are shown in part (c). For instance, in scale 1:10000, the city section is stored as



5 CONCLUSIONS AND FUTURE WORK 9

a complex geometry (a polygon with six sub-polygons), with oid o1 and with
three physical representations – one per scale – pv1, pv2 and pv3. Each of these
geometries will be accessible via a different DBV, respectively d11, d12 and d13.

Figure 7: (a) Multiversion objects and their physical versions. (b) Physical
versions and their geometry. (c) Logical versions from the example

Suppose the user wants to work at scale 1:10000, in the horizontal road
situation, i.e., DBV d21. The DBV view is constructed from all objects explicitly
assigned to it (pv4 of o2 ), and all objects in previous DBVs of that scale, up
to the root, i.e., d11 – pv1 of o1. This construction of consistent scenarios
for a given scale in time is achieved via the stamps, by the DBV mechanism.
Notice that each version is stored only once. Unless objects change, their state
is propagated through DBVs, saving space. Also, users can navigate across a
path in the derivation tree, following the evolution of objects in time. For more
details on space savings, see [CJ90].

5 Conclusions and Future Work

We have presented an approach to manage multi-scale geospatial data, and
keep track of their evolution, through the DBV model. This proposal was
implemented in a prototype, developed in order to validate our solution. We
have already implemented some toy examples, which show the advantages of
this proposal, and are constructing a test suite with real data.

Our framework supports the traceability of the evolution of spatial objects,
while at the same time handling multi-scale management. Thanks to the adop-
tion of the DBV model, storage space is saved [CJ90], and the separation be-
tween physical and logical versions facilitates the creation of consistent, single
scale views over multi-scale data.

We point out that our approach is centered on data structures to store and
manage multi-scale data. This allows controlling updates, keeping history of
evolution in the real world and other issues that can be efficiently handled
only in a storage based policy. Nevertheless, the DBV infrastructure can be



6 ACKNOWLEDGEMENTS 10

used as a basis for any kind of generalization approach – e.g., construction of
intermediate scales, generalization of alternative virtual scenarios, and so on, to
work, for instance in digital cartography.

Future work includes versioning along the temporal scale and specification
of integrity constraints across scales, to determine rules for update propagation.

6 Acknowledgements

Work financed by FAPESP (grant 2011/14280-0) and CNPq (grant 133037/2011-
8) and partially by the Microsoft Research FAPESP Virtual Institute (NavScales
project), the Brazilian Institute for Web Sciences Research, CNPq (MuZOO
project), PRONEX-FAPESP 10, CAPES (AMIB project), as well as individual
grants from CNPq.

References

[BBB07] Y. Bédard, E. Bernier, and T. Badard. Multiple representation
spatial databases and the concept of vuel. Encyclopaedia in Geoin-
formatics, Hershey: Idea Group Publishing, 2007.

[BPB10] D. Burghardt, I. Petzold, and M. Bobzien. Relation modelling
within multiple representation databases and generalisation ser-
vices. The Cartographic Journal, 47(3):238–249, 2010.

[CJ90] Wojciech Cellary and Geneviève Jomier. Consistency of versions in
object-oriented databases. In Proc. of the 16th Int. Conference on
Very Large Databases, pages 432–441. Morgan Kaufmann, 1990.

[DWL08] X. Deng, H. Wu, and D. Li. Mrdb approach for geospatial data
revision. In Proc. of SPIE, the Int. Society for Optical Engineering,
2008.

[FJ03] A. Friis-Christensen and C. Jensen. Object-relational management
of multiply represented geographic entities. In Proc. 15th Int. Con-
ference on Scientific and Statistical Database Management SSDBM,
2003.

[GJ01] Stéphane Gançarski and Geneviève Jomier. A framework for pro-
gramming multiversion databases. Data Knowl. Eng., 36:29–53,
2001.

[GZH+10] Huijun Gao, Hao Zhang, Daosheng Hu, Ran Tian, and Dazhi Guo.
Multi-scale features of urban planning spatial data. In 18th Int.
Conference on Geoinformatics, pages 1–7, 2010.

10Model and Methods in eScience for the Life and Agricultural Sciences



REFERENCES 11

[Oos09] P. Oosterom. Research and development in geo-information gen-
eralisation and multiple representation. Computers, Environment
and Urban Systems, 33(5):303–310, 2009.

[OS10] P. Oosterom and J. Stoter. 5d data modelling: Full integration of
2d/3d space, time and scale dimensions. In Proc. GIScience 2010,
pages 310–324, 2010.

[PSVZ09] Christine Parent, Stefano Spaccapietra, Christelle Vangenot, and
Esteban Zimányi. Multiple representation modeling. In Encyclope-
dia of Database Systems, pages 1844–1849. Springer US, 2009.

[PSZ06] C. Parent, S. Spaccapietra, and E. Zimányi. The murmur
project: Modeling and querying multi-representation spatio-
temporal databases. Information Systems, 31(8):733–769, 2006.

[RD07] Anne Ruas and Cécile Duchêne. Chapter 14 - a prototype gen-
eralisation system based on the multi-agent system paradigm. In
Generalisation of Geographic Information, pages 269–284. Elsevier
Science B.V., 2007.

[Sar07] L. Tiina Sarjakoski. Chapter 2 - conceptual models of generalisa-
tion and multiple representation. In Generalisation of Geographic
Information, pages 11–35. Elsevier Science B.V., 2007.

[SPV00] Stefano Spaccapietra, Christine Parent, and Christelle Vangenot.
Gis databases: From multiscale to multirepresentation. In Abstrac-
tion, Reformulation, and Approximation, volume 1864 of Lecture
Notes in Computer Science, pages 57–70. Springer Berlin / Heidel-
berg, 2000.

[SVvO+11] Jantien Stoter, Thomas Visser, Peter van Oosterom, Wilko Quak,
and Nico Bakker. A semantic-rich multi-scale information model
for topography. Int. Journal of Geographical Information Science,
25(5):739–763, 2011.

[ZJ03] S. Zhou and C. B. Jones. A multirepresentation spatial data model.
In Proc. 8th Int. Symposium in Advances in Spatial and Temporal
Databases – SSTD, pages 394–411, 2003.


