
A Geographical Approach for Metadata Quality
Improvement in Biological Observation Databases

Daniel Cintra Cugler
Institute of Computing
University of Campinas

13.083-970 – Campinas – SP – Brazil
danielcugler@ic.unicamp.br

Claudia Bauzer Medeiros
Institute of Computing
University of Campinas

13.083-970 – Campinas – SP – Brazil
cmbm@ic.unicamp.br

Shashi Shekhar
Department of Computer Science

University of Minnesota
55455 – Minneapolis – MN – USA

shekhar@cs.umn.edu

Luı́s Felipe Toledo
Fonoteca Neotropical & Museu de Zoologia

Institute of Biology
University of Campinas

13.083-862 - Campinas, SP, Brazil
toledolf2@yahoo.com

Abstract—This paper addresses the problem of improving
the quality of metadata in biological observation databases, in
particular those associated with observations of living beings, and
which are often used as a starting point for biodiversity analyses.
Poor quality metadata lead to incorrect scientific conclusions,
and can mislead experts in their analyses. Thus, it is important
to design and develop methods to detect and correct metadata
quality problems. This is a challenging problem because of the
variety of issues concerning such metadata, e.g., misnaming of
species, location uncertainty and imprecision concerning where
observations were recorded. Related work is limited because it
does not adequately model such issues. We propose a geographic
approach based on expert-led classification of place and/or range
mismatch anomalies detected by our algorithms. Our work is
tested using a case study with the Fonoteca Neotropical Jacques
Vielliard, one of the 10 largest animal sound collections in the
world.

I. INTRODUCTION

Our work concerns the curation of databases containing
records of observations of living beings. An observation
concerns the occurrence of an organism or set of organ-
isms detected at a given place and time according to some
methodology. In other words, ”an observation represents an
assertion that a particular entity was observed and that the
corresponding set of measurements were recorded (as part of
the observation)” [8]. Observation databases store a variety
of data, at multiple spatial and temporal scales, including
images, maps, sounds, texts and so on. In several domains,
the reliability of metadata is a key concern for scientists
because errors can lead to incorrect conclusions that may ripple
across an entire study and beyond. For example, in biodiversity
studies, metadata errors regarding a single species can affect
understanding not just of the species, but of wider ecological
interactions. Metadata quality improvement in such a scenario
is challenging not only due to the intrinsic heterogeneity
of such data, but also because of the many scientists who
intervene in specifying and curating metadata, for distinct
kinds of spatial and temporal granularities.

Some recent publications on curation of scientific metadata

– e.g., [2] [29] – are mostly directed towards citizen provided
information, which is known to be less reliable than data
entered by domain experts. However, our experiments show
that, no matter how much effort scientists put into curating
data, there is still considerable margin for errors. This tends to
grow with data volume. For instance, a simple set of checks
performed by our group on another scientist-curated data set
showed that roughly 20% of the records still contained errors,
such as typos in species names, or lack of standardization.

Some errors in metadata are specific to the domain (e.g.,
misidentified species). Others are found in all kinds of meta-
data, and include problems such as duplicated records, typo-
graphical errors, data outside the correct range, incomplete
data fields. Typically, errors in metadata are detected through
various data cleaning and curating methods [9] [25]. The
growing size of biological observation databases means that
data cleaning and curating processes have become ever more
arduous and time-consuming. Our work aims to develop new
computational methods to ease this burden.

Metadata quality improvement in such databases is chal-
lenging because of the observation methodologies adopted.
Such observations often result from many scientific expeditions
undertaken along the years. As remarked by [8], for instance,
since observation records depend on such teams, they suffer
from both schema and semantic heterogeneity (i.e., structure
and content). Thus, not only is there a large percentage of
legacy records, but heterogeneity caused by methodological
variations in observations. Related Computer Science work in
data cleaning in this domain is limited, being mostly concerned
with fixing typing and numeric errors, but without performing
further correlations. Even in cases where filters are provided
to take into account the location where species are expected
to live (e.g., [29]), there is little concern with uncertain and
imprecise descriptions of locations (e.g., via place names and
region names), or with outdated species classification.

To address these limitations, we provide a novel perspec-
tive. We propose a geographic approach for metadata quality
improvement in biological observation databases, as detailed



in Figure 1. In our case study with animal sound observations,
for example, our approach enables detection of anomalies in
both species’ reported geographic distributions and in species’
identification. Our goal is to support biologists in detecting
metadata errors that are domain-related, and that need expert
knowledge, thereby alleviating the burden of manual curation.

Fig. 1. Overview of our geographical approach.

Our approach is evaluated using a case study at the
Fonoteca Neotropical Jacques Vielliard (FNJV) [14], one of
the top 10 animal sound collections in the world [26]. Our
experiments identified geographic anomalies for 12% of 1037
distinct species in the database, with a total of 371 records out
of 7049 records. These anomalies were reviewed by biologists
and classified into four categories: A) metadata error; B)
outdated metadata; C) errors in the distribution range maps
and D) possible new species pattern detected. As will be seen,
the latter class of errors can feed all kinds of biodiversity
analyses – e.g., detecting animal migration due to change in
environmental conditions, such as those caused by climate
change.

II. BACKGROUND AND RELATED WORK

A. Animal Sound Collections

In biodiversity studies, there is growing interest in sound
recordings. Several organizations around the world maintain
extensive animal sound collections, providing information not
only about species but also about the environment in which
they live. These collections have priceless historical informa-
tion that can be used, for example, to study animal sound
communication and behavior – e.g. animals’ use of their
acoustic and vibrational senses to detect the presence of both
predators and prey and to communicate with members of the
same species [13].

In addition to the sound recordings, these collections often
provide information related to the environment where the
sound was recorded, e.g. weather conditions. Such information
is widely used in animal habitat prediction, detection of spatial
patterns, dynamics of populations, animal conservation, and
so on. This helps scientists derive correlations about species,
simulate habitat conditions, and conduct countless other studies
that help elucidate the past, describe the present and study the
future of eco diversity.

Our case study, FNJV, has recordings of all vertebrate
groups (fishes, amphibians, reptiles, birds and mammals) and
some groups of invertebrates (as insects and arachnids). Other
sound recording collections exist as well. The Cornell Lab of

Ornithology [10] is an international center for the study, appre-
ciation, and conservation of birds [6]. Fonozoo [27], Fonoteca
Zoológica, is yet another example of sound collections, being
the animal sound library of the Museo Nacional de Ciencias
Naturales of Madrid (Spain) [27]. Currently Fonozoo provides
about 33,000 metadata records online. The Animal Sound
Archive [15] at the Museum fur Naturkunde in Berlin presently
provides about 120,000 bioacoustical recordings. The Avian
Knowledge Network [1] provides data from bird-monitoring,
bird-banding, and broad-scale citizen-based bird-surveillance
programs.

Such collections differ primarily in their number of record-
ings, the kind of species they have recorded and methods used
to obtain recordings. Most of those collections have associated
metadata. Such metadata may differ, but the most important
fields are supported by all (i.e., recording ”what (species
observed), when, where, who (observer)”). For example, at
FNJV most of the sounds are recorded by domain experts, who
often annotated associated metadata during recording time. On
the other hand, some of the collections cited above have most
of the sounds provided by volunteers. Therefore, in the latter
case, there is no quality control of the metadata provided, and
thus curation requires additional procedures.

Even though there is no consensual standard on defining
metadata fields for sound records, most of them have a
common subset of fields. Table I shows 22 (out of 51) metadata
fields that are present in the FNJV collection. Row 1 gives
information to identify the recorded species (what). Row 2
describes when, where and the environment in which the sound
was recorded. Row 3 describes the recording features, as well
as devices used to record them (how).

TABLE I. SUBSET OF METADATA FIELDS OF THE FNJV COLLECTION.

METADATA FIELD
1 Phylum, Class, Order, Family, Genus, Species, Gender, Number of individuals.
2 Collect time, Collect date, Country, State, City, Location, Habitat,

Micro-Habitat, Air temperature (◦C), Atmospheric conditions.
3 Recording device, Microphone model, Microphone model, Sound file format,

Frequency (kHz).

B. Geographic Distribution Maps

Citizen science is the term often used to describe com-
munities or networks of citizens who act as observers in
some domain of science. Analogously, Volunteer Geographic
Information (VGI) refers to data provided by citizens, in
particular, including geographic information [20] [16].

Several kinds of projects take advantage of information
provided by citizen science and VGI. One example is [24],
where citizens measure their personal exposure to noise in
their everyday environment by using GPS-equipped mobile
phones as noise sensors. The information is used to provide
geographic distribution maps about noise-pollution. Such maps
can be used to support insight into the problem of urban noise
pollution and its social implications.

Another example is the Christmas Bird Count [23]. It is
related to animal preservation and environmental studies (our
case study). This project is an effort to perform a mid-winter
census of bird populations. This kind of project considers,
among others, information provided by citizen science and



VGI to create geographic distribution range maps for several
species.

Geographic distribution maps are used to show spatial
distribution in several domains, e.g., occurrence of diseases,
crimes, accidents, species habitat, and so on. Species distribu-
tion maps – nowadays more often in digital formats – are
commonly used by biologists in their studies. Some maps
provide geographic distribution for both current and extinct
species, such as the BirdLife International Digital Distribution
[5] and the International Union for Conservation of Nature
(IUCN) [21].

Distribution maps are usually computed from the combi-
nation of a variety of sources, including: a) museum data;
b) distribution atlases derived from systematic surveys; c)
expert opinions and research expeditions and d) observation
records provided by volunteers (citizen science and VGI). The
accuracy of these maps can be affected by the quality of the
data (especially when provided by non-expert volunteers). As
a result, the maps may underestimate/overestimate geographic
distribution ranges. Nevertheless, they remain an excellent
source of information for several kinds of research.

C. Incomplete Metadata and Uncertain/Imprecise Location

We find it useful to classify methods for cleaning and curat-
ing of observation data as either non-geographic or geographic-
based. This classification is focused on domains in which
location metadata plays an important role (e.g., environmental
studies, epidemiology or biodiversity). We call these domains
”location-sensitive,” in the sense that geographic information
is key for a wide range of scientific analyses.

In a non-geographic-based approach, metadata quality im-
provement does not consider geographic information present
in the metadata as a source of clues for detecting errors. For
example, in a manual curation process, biologists may listen to
species vocalizations in order to verify if species were correctly
identified, but their analysis may not consider the location
where the observation was performed. Other examples concern
computerized approaches, such as [4], [22], [12] and [2]. In
[4], the authors detect duplicated records in metadata using text
distance functions. In [22], the authors use clustering methods
and association rules in order to perform data cleaning. In
[12], authors improve the quality of relational data using
conditional functional dependencies. In [2], the authors created
a framework that provides metrics to evaluate the expertise of
the users and the reliability of data provided by them.

However, some errors can only be detected if the approach
considers the location in which the observation occurred.
Consider, for instance, metadata that indicate that a polar bear
was observed in the Southern hemisphere. A non-geographic
approach could not detect that there is an error in the metadata,
since polar bears live in the Northern hemisphere.

Geographic-based approaches consider location metadata.
The older the observation metadata are, the higher the chance
that place information is not georeferenced, and that just
location names appear. Even when names are provided, it is
not uncommon for the metadata to be incomplete. Uncertain
or imprecise descriptions of locations are recurrent problems
in observation databases, as are old place names, or references

to places that no longer exist. The basic idea, in this case, is
to design algorithms that derive coordinate information from
place names [7]. In [29], for example, the authors developed
filters to improve the quality of data provided by citizen
science. Such filters, among other features, take into account
the location where species are expected to live, in order to
find species that have been misidentified by users. However,
this approach does not deal with uncertain and imprecise
descriptions of locations, nor can it detect outdated species
names in legacy collections.

Indeed, it is not unusual for metadata to be incomplete
in biological observation databases, in particular legacy col-
lections. In some cases, missing information, such as air
temperature and rainfall indexes, can be derived from external
data sources, as we have shown previously [11]. This kind of
information can be derived taking into account both the date
and location in which an observation was made.

In legacy observation databases, before the GPS era, lo-
cation information was provided as textual description of the
places where recordings were made, e.g. Campo Grande (city),
Mato Grosso do Sul (state), Brazil. In this example, deriving
the city’s centroid coordinates from text does not pose big
challenges, since currently there are several techniques to
extract this information from gazetteers [17]. Centroid-based
approaches, however, may fail to provide precision in the
degree needed.

Location information can also be incomplete or imprecise,
e.g., some records give only the country names, with no clue
about a more specific location. Location metadata may also
be recorded as ”Brazil, Argentina” because the observation
was performed somewhere on the border. Geographic-based
cleaning methods must deal with this issue.

III. OUR APPROACH

The main idea behind our geographical approach is to
contrast geographic distribution maps against the places where
the observations were made (as per location metadata). When
this analysis detects that some of the location observations
are not within the expected distribution region, then there is a
problem to solve. For example, the metadata are incorrect, or
the distribution map presents inconsistencies, etc. The records
where problems were identified are then flagged, so scientists
can feed the results to subsequent analysis processes.

Our technique can be used with any kind of location-aware
observation (e.g. observations about animals, diseases, plants
and people), contrasted against the geographic distribution
maps of such observations. For example, consider metadata
containing locations where people contracted Dengue fever in
Brazil (Dengue fever is a disease transmitted mainly through
the Aedes aegypti mosquito). In this example, the metadata
can be contrasted against some authoritative map about this
disease, e.g., provided by the Brazilian Ministry of Health, to
detect inconsistencies. Without loss of generality, in order to
clarify our explanations, this section describes our technique
as applied to the domain of animal sound observations (our
case study). Figure 2 gives an overview of our approach.

Step 1 - Preprocessing The first step of our technique
(preprocessing – item C) retrieves from metadata both species



Fig. 2. Geographical technique to support metadata quality improvement in biological observation databases.

name s and the set of places where the species were observed,
Ps={p1, p2, ..., pn}, where pi is a point or a polygon that
refers to the geographic coordinates of observation record i,
and n is the number of observations of species s (and thus
the number of metadata records for species s). The older the
metadata information, the higher is the chance that places are
not georeferenced, and that just location names appear. Since
geographic coordinates are a key aspect in our technique, the
preprocessing step also provides a functionality to derive geo-
graphic coordinates from gazetteers (item B). The coordinates
are obtained in two distinct scenarios: (a) complete location
metadata are provided, such as <country, state, city>; (b)
incomplete location metadata are provided, such as <country,
state>or <country>. In scenario (a), gazetteers provide point
coordinates, representing the city’s centroid – (City/county
names are often used in location metadata, to denote the closest
region in which a species was observed) – while scenario (b)
provides polygon coordinates of the region indicated in the
metadata. Figure 3 shows a map with coordinates for two
places, extracted from gazetteers. Place 1 is a point that repre-
sents the city of Campinas, São Paulo state, Brazil (complete
metadata location). Place 2 is a polygon that represents the
Brazilian state of Mato Grosso do Sul (incomplete metadata
location).

Fig. 3. Coordinates of two places extracted from gazetteers. Place 1 (a
point) is derived from a complete metadata location, containing <city, state,
country>names. Place 2 (a polygon) is derived from an incomplete metadata
location, containing <state, country>names. (Best in color)

Step 2 - Finding anomalous places. Once the appropriate
coordinates are defined, the preprocessing step delivers the
metadata with coordinates to be processed by the Geographi-
cal Engine (item D), the core of our approach. It collects data
from authoritative geographic distribution maps and processes

them against stored metadata, finding anomalous locations as
follows.

First, this step retrieves the geographic range (item E)
where the species s is expected to live, GRs={q1, q2, ..., qm},
where GRs is a set of polygons q and m ≥ 1. GRs can be
retrieved from sources such as the International Union for
Conservation of Nature (IUCN) [21] or BirdLife International
Digital Distribution Maps of Birds [5]. Although they are
authoritative organizations, the regions reported by these kinds
of sources are not highly accurate and are known in some
cases to be underestimated or overestimated (as explained
in section II-B). Furthermore, a domain expert may consider
that an observation just a few kilometers beyond GRs is not
an anomaly. In order to overcome this issue, the technique
defines a buffered geographic range for s, BGRs. It is based
on the configuration variable dist (one of the inputs of the
geographical engine step) defined by a domain expert.

BGRs = GRs + Buffer(dist, GRs)

BGRs expands the original geographic range GRs up to
its buffer of size dist, Buffer(dist, GRs). Figure 4 shows the
original geographic range GRs, the dist variable set up by the
expert, the buffer and the new buffered region BGRs.

Fig. 4. A buffered geographic range, BGRs, of size dist.

Note that if the domain expert considers that GRs is
overestimated, he or she can define a negative value for dist, in
order to shrink the region provided by the species geographic
distribution map. In this case, BGRs is going to be smaller than
GRs. Also note that the variable dist may have different values
for different kinds of observations. For example, the domain
expert may want to set up a higher dist value for a specific
mammal species than for amphibians because some kinds of
mammals can easily move to farther regions.

Given these definitions, anomalous places are defined to



Fig. 5. Example applied in the technique. The green polygon is GRs and
the gray polygon is BGRs. Places from p1 to p8 are the places in which the
vocalizations of species Leptodactylus bokermanni were recorded, Ps. The
places p6, p7 (yellow region) and p8 are anomalous, i.e. λ(BGRs,Ps) = {p6,
p7, p8}. (Best in color)

be elements of Ps that fall outside or do not intersect BGRs.
Spatial operations include methods to detect if a set of spatial
elements (points and polygons) are inside or intersect polygons
and to calculate the buffer area. The anomalous places are
defined as follows:

λ(BGRs,Ps) = Ps - (Ps ∩ BGRs)

The intersection symbol in the definition above retrieves
spatial objects as follows. As Ps may contain points and
polygons, and BGRs contains only polygons, then the inter-
section operation must detect point in polygon and polygon
overlapping polygon. The intersection result is then subtracted
from Ps, such that λ(BGRs,Ps) ⊆ Ps.

Step 3 - Presenting output to the experts. The Geo-
graphical Engine (item D) then delivers information to the
visualization layer (item F). This layer creates maps (item G),
portraying Ps elements (anomalous and non anomalous) and
BGRs regions. Results provided by the technique comprise
such maps and also a list of metadata record ids.

Let us illustrate the process with an example. Consider
an animal sound database with 8 recordings of the species
Leptodactylus bokermanni, a kind of frog. Figure 5 shows the
places in which the vocalizations were recorded, Ps = {p1, p2,
p3, p4, p5, p6, p7, p8}. Note that p7 is a polygon, meaning
that the metadata location information for this recording are
incomplete (only <state, country>was reported). The green
region is the expected geographic range, GRs, for such species.
The gray region is calculated based on the variable dist set up
by the expert. Both gray and green regions comprise BGRs. In
this example, the technique singles out vocalizations recorded
outside BGRs, i.e., λ(BGRs,Ps) = {p6, p7, p8}.

Given the outputs of Step 3, the scientist can then analyze
the results provided. If they show, for example, that a species
was observed outside BGRs, the expert can check the data and
verify, for instance, if the species was misidentified. If it was,
the expert detected an error in the database and can fix it. If

it was not, the expert can investigate if it is a new behavior
and/or pattern, or even an error in the maps. The classification
of the results is performed manually by the domain experts.

Our approach is suitable to any kind of scientific, location-
sensitive metadata database, especially large collections. It
provides support to tasks that would not be possible to perform
manually in an acceptable time frame. It is important to note
that the process flow does not define if the data are wrong or
if a pattern was detected. The process is semi-automatic, being
used to help experts to improve metadata quality.

Our technique proved to be also useful, among other things,
to perform detection of outdated records, as described in the
case study detailed in the next section.

IV. CASE STUDY

A. Data Preparation

Our case study addressed the needs of curators of FNJV.
The original collection dates back to the 1960’s, and thus most
records lack geographic coordinates of where sounds were
recorded, Ps. Instead, there is an indication of place names.
First, we derived missing coordinates from Geonames [28] and
the Brazilian Institute of Geography and Statistics (IBGE) [18],
using centroids of polygons (cities, states, countries). Note
that this methodology may not provide accurate coordinates
of the places where the sounds were recorded, However,
this approximation was deemed by the experts to be good
enough for the purposes of our case study (as confirmed in
the subsequent tests).

For the species spatial distribution maps, GRs, we down-
loaded shapefile files provided by the IUCN Red List [21] and
the BirdLife International Digital Distribution Maps of Birds
[5]. These files were adjusted to the EPSG 4326 geographic
coordinate system and WGS84 world geodetic system. Ad-
ditional map sources can also be used (e.g., National Atlas
Amphibian distribution [3]).

B. Prototype

Our prototype was created using R [19], a language and
environment for statistical computing and graphics. We chose
R because it provides a wide variety of statistical and graphical
techniques as well as because it is highly extensible. Figure 6
presents the architecture of the prototype. It has four inputs: 1)
animal sound collection data (item 1) in which Ps (place coor-
dinates – points and polygons) are provided in SHP format; 2)
species geographic range maps (items 4 and 5), GRs (polygons
in SHP format); 3) the dist parameter (item 6); and 4) the
place coordinates provided by IBGE and Geonames (items
2 and 3). In particular, IBGE data were provided in KML
file format, and Geonames data were provided through web
services. Coordinates were extracted from IBGE KML files
using Java JDOM API. Geonames web service was accessed
using a JAVA API provided by Geonames (coordinates were
retrieved through the API functions). Coordinates were saved
in the FNJV database and then exported to the SHP file format.

Our prototype provides two outputs: 1) Textual description:
a list of database records (including the row id) in which
species vocalizations were recorded out of the BGRs; 2) Visual
description: maps containing the rows id, species name, the



Fig. 6. Prototype of our Geographical Approach for Metadata Quality Improvement.

Fig. 7. Output map generated by the prototype for the Elachistocleis ovalis
species (Amphibian)– anomaly classified as outdated metadata. (Best in color)

regions GRs where they are expected to live and the places Ps

where the vocalizations were recorded.

Figures 7 and 8 show two output maps generated by
our prototype (the maps exhibit part of South America).
These maps refer to the Elachistocleis ovalis and Allobates
marchesianus species. The gray polygons represent the regions
in which these species are expected to live, GRs (according to
IUCN). Points represent the places where the species sounds
were recorded, Ps. Points are colored blue when inside BGRs.
They are colored red beyond the dist tolerance, i.e., red points
∈ λ(BGRs,Ps).

In contrast, Figure 9 shows a map for the Aplastodiscus
perviridis species. This map shows that all observations of
such species were made inside BGRs, i.e., all observations
were non-anomalous.

Fig. 8. Output map generated by the prototype for the Allobates marchesianus
(Amphibian) – anomaly classified as error in the distribution range map. (Best
in color)

Fig. 9. Output map generated by the prototype for the Aplastodiscus perviridis
species, an amphibian species. In this case all observations are non-anomalous.
(Best in color)

C. Results

The prototype was set up with dist = 100 kilometers.
Table II summarizes some of the input and output numbers
of our experiment. The first column shows the four distinct
classes of animals we used as input: Bird, Mammal, Reptile
and Amphibian. The second column shows the number of
observations for each taxonomic class. The third column shows



the number of observations which were detected in anomalous
places. The fourth column describes the number of distinct
species analyzed. The last column shows the number of distinct
species which were detected in anomalous places. Among
1037 distinct species in our case study (119 Amphibians,
877 Birds, 38 Mammals and 3 Reptiles), 13 Amphibian, 105
Birds, 11 Mammals and 0 Reptiles species were detected in
anomalous sites, i.e., about 12%.

TABLE II. DETAILS FOR EACH SPECIES CLASS USED IN OUR
EXPERIMENT. COMPARISON OF THE NUMBER OF RECORDS/SPECIES

ANALYZED AND THE NUMBER OF ANOMALIES DETECTED.

Species Observations Anomalous Species Species detected
Class in the sound observations analyzed in anomalous

database places
Amphibian 419 21 119 13

Bird 6414 303 877 105
Mammal 212 47 38 11
Reptile 4 0 3 0

The maps with anomalous places generated by our pro-
totype were presented to biologists, who manually classified
the anomalies into 4 categories: A) metadata errors; B) out-
dated metadata; C) errors in distribution range maps and D)
anomalous pattern. Table III details each category.

TABLE III. CLASSIFICATION OF THE EXPERIMENT RESULTS INTO
FOUR CATEGORIES.

Class Classification Description
A Metadata error species were wrongly classified (biologists must

listen to the recordings in order to correctly
reclassify the species)

B Outdated metadata the scientific name changed (biologists must
verify current taxonomic information and
update the metadata)

C Errors in the species geographic range maps may be
distribution range overestimated or underestimated
maps

D Anomalous pattern new distributional record for the species,
this may promote advances in our understanding
of animal distribution. Scientists must use data
mining methods to detect the cause of the
anomalous pattern.

Figure 7 shows an output map generated by our prototype
for the amphibian species Elachistocleis ovalis. Scientists
informed that the species taxonomic name was divided into
several other species. This anomaly corresponds to outdated
metadata (Table III, Class B). Figure 8 shows a map for
the species Allobates marchesianus. According to the domain
expert, the species distribution range map is underestimated.
This anomaly corresponds to an error in distribution range map
(Table III, Class C).

Table IV shows four kinds of feedback from scientists
about the amphibian species detected in anomalous sites. The
first column gives the names of the species in the metadata. The
second column shows the corresponding number of anomalous
database records. The third column describes the category
in which the scientist classified the anomaly (according to
Table III). The fourth column summarizes the corresponding
feedback.

Let us clarify the content of Table IV by detailing the
fourth row (Pseudis limellum species). For such species, six
database records had vocalizations recorded in anomalous
places. Scientists analyzed such records, concluding that the
sounds recorded in the Amazon forest region probably cor-
respond to other species (probably Lysapsus limellum). The

TABLE IV. BIOLOGISTS FEEDBACK FOR AMPHIBIAN SPECIES
OBSERVED IN ANOMALOUS SITES.

Species name Anomalous Class Comments by Scientists
observations

in the
database

Allobates 1 C Probably the distribution map is
marchesianus underestimated.
Elachistocleis 1 B This name is not valid any longer.
ovalis Species subdivided into others

(all of which with smaller spatial
distribution than their predecessor)

Leptodactylus 2 A or D The points in the middle of Brazil
bokermanni probably are other species. They might

be the Adenomera bokermanni.
Pseudis 6 A or D The point in the Amazon forest region
limellum probably corresponds to other species,

perhaps Lysapsus limellum.

anomalies were classified as categories A or D (metadata error
or new pattern – according to Table III). It means that at
first glance the animal sounds were misidentified (metadata
error). However, if the domain expert double checks the
recording of such records and verifies that the species was
correctly identified, the anomaly is actually a new pattern of
species distribution, with important implications in biodiversity
studies. For instance, since the study involves legacy data, this
may indicate that species migrated from that region (and thus
it is up to the experts to analyze historical records on that same
region to see what changed to cause such migration). In some
cases, such records may be the only witness to the fact that
the species actually lived in that area.

Another interesting fact from Table IV comes from its first
row. This example indicates that the range maps provided
by authoritative sources may be wrong. Thus, not only can
we detect errors in metadata, but indicate problems with
consensual external sources.

V. CONCLUSIONS AND FUTURE WORK

We presented a geographical technique to improve meta-
data quality in biological observation databases for domains in
which location plays an important role. Our experiment results
were manually analyzed by domain experts, who classified the
results into four categories: metadata errors, outdated metadata,
errors in species distribution range maps and possible new
species pattern. Our work has been motivated by challenges
faced by biologists on managing large amounts of animal
sound recordings, using FNJV as a real world case study.

Ongoing and future work might focus on employing super-
vised learning algorithms to recommend classes to be reviewed
by scientists, to reduce their burden. We also intend to consider
environmental variables in our approach, by using enriched
information provided by our previous work [11].
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