
An Extensible Framework for
Spatio-Temporal Database Applications

Glaucia Faria, Claudia Bauzer Medeiros and Mario A. Nascimento

April 23, 1998

TR- 27

A TIMECENTER Technical Report



��� ��� �
An Extensible Framework for Spatio-Temporal Database Applications

Copyright c
�

1998 Glaucia Faria, Claudia Bauzer Medeiros and Mario A. Nasci-
mento. All rights reserved.

��	
���

��������
Glaucia Faria, Claudia Bauzer Medeiros and Mario A. Nascimento

��	�������������� 
"!$#%� �&�'
��)(
April 1998. A TIMECENTER Technical Report.

*
IME + ENTER

�,�-�.���/�
�10-��!��&�

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Böhlen
Renato Busatto
Heidi Gregersen
Dieter Pfoser
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta
Sudha Ram

Individual participants
Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/research/DBS/tdb/TimeCenter/>

Any software made available via TIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called Rune
alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.



Abstract

There is a wide range of scientific application domains requiring sophisticated management of spatio-temporal
data. However, existing database management systems offer very limited (if any at all) support for managing such
data. Thus, it is left to the researchers themselves to repeatedly code this management into each application. Be-
sides being a time consuming task, this process is bound to introduce errors and increase the complexity of
application management and data evolution. This paper addresses this very point. We present an extensible
framework, based on extending an object-oriented database system, with kernel spatio-temporal classes, data
structures and functions, to provide support for the development of spatio-temporal applications. Even though
the paper’s arguments are centered on geographic applications, the proposed framework can be used in other
application domains where spatial and temporal data evolution must be considered (e.g., Biology).

1 Introduction

Data used in scientific applications are almost always time-dependent. Not only does the reliability of the applica-
tions depend on the validity of the data, but also the data analysis themselves can only be performed on temporally
compatible values. The need for temporal data management, prompted the creation of a novel research field – that
of temporal database management systems. The requirements of scientific applications for temporal data manage-
ment have been taken into consideration by researchers in the field, to include, for instance, handling of temporal
series and management of data versions (e.g., results of experiments). In addition, the proliferation of results in
that area has led to recent efforts in standardization (e.g., [JCE

�

94, Sno95]).
Another important issue for a large set of scientific applications is that of handling spatial data. At first, this

was only reflected in the need for displaying these data, spurring research in interfaces (e.g., [KV92]). Nowadays,
spatial data handling has become a whole new issue in database systems research and development. Examples of
such applications are found in Medicine, Biology or in Earth sciences (e.g., [BZ91, AKS

�

93, A
�

94b, BX94]).
Again, as in the case of temporal data management, prototypes and systems have been built, usually geared towards
geometric data processing, where the spatial description of the world is represented in terms of point, lines and
polygons (the so-called vectorial data representation. Most of the recent prototypes have been built using as a
basis either object-oriented or object-relational database systems, which provide at the same time the functionality
of a DBMS and the flexibility and extensibility of the object paradigm. Nevertheless, almost all such systems
reported in the literature are time-less, i.e., while they offer several facilities to handle spatial data, very few, if
any, any aimed towards temporal data.

The need for integrated handling of time and space dimensions for scientific data has long been recognized
(e.g., [FJP90]). An important issue in this sense is the proposal of adequate data models, which have been usu-
ally geared towards Geosciences (e.g., [Peu93, Lan93b, Gou93, NTE92, A

�

94a]), but a more general purpose
implementation is yet to be reported, as shows a recent bibliography of spatio-temporal systems [SS94]. Reported
prototypes are usually restricted to only one dimension – that is, dealing with temporal database management or
with spatial database management, but not both (e.g., [GR93, SV92, AS91, SK96]). At most, the handling of
time in a spatial context is limited to version management (e.g., [MJ94, AW96]), or restricted to a limited set of
operations [SW95].

The difficulties in implementing a spatio-temporal system are due to the new problems that are encountered
when combining the problems found for handling each dimension. First, there is the issue of defining a minimal
set of operators which allow navigation through space and time. Here, questions such as compatibility and orthog-
onality of the operator set are arised. Next, there is the problem of an adequate data model which will support
the operator set. Another issue is that of implementation, i.e., what data structures and algorithms to implement
in order to support operations and model, while at the same time ensuring adequate performance. Data loading
and integration is itself another complicating factor since scientific data are often unstructured, hence its insertion
into a fixed schema database may cause problems for query processing [Abi97]. Finally, there are issues related
to usability, e.g., how flexible and extensible is the system, and interface design.

For these reasons, in most cases, the combined handling of space and time is left to the scientists, who have
to embed special purpose code for managing spatio-temporal data into their applications. On a spatial system,
timestamp management is left to the application; conversely, users of temporal databases must themselves code
appropriate spatial data modules. Besides being a time consuming task, this process is error-prone and bound to
increase the complexity of application management and data evolution.

1



This paper provides a partial solution to some of these issues. We present an extensible database framework,
based on enhancing the O2 [BDK92] object oriented DBMS with a minimal set of spatial, temporal and spatio-
temporal primitives. These primitives can be used in a wide spectrum of scientific applications. The framework
was constructed having two main issues in mind – the operator set, and a kernel set of application-independent
spatio-temporal database classes. Different applications can be built using the framework by merely specializing
and composing the kernel classes, and inserting the appropriate data into the database.

Furthermore, even though the application domain we considered was that of Geosciences, several other do-
mains can also take advantage of the framework by implementing the appropriate application classes, and applying
the set of primitive operators. The main contributions of this paper are thus the following:

� specification of a minimal set of spatio-temporal operators for managing and querying scientific data, in 2D,
for vectorial data types;

� implementation of these operators into the framework in such a way that they can be applied orthogonally,
thus leaving space for query optimization, and allowing users to extend the set;

� providing a kernel set of database classes which, combined with the operators (implemented either as meth-
ods or functions) allow development of scientific applications.

The rest of this paper is structured as follows. Section 2 presents our space and time primitives. Section 3
describes our data model, and its implementation into the kernel classes. Section 4 gives an example of typi-
cal queries that have been implemented in the framework, for a geographic application (land use management).
Section 5 presents the related work. Section 6 sums up the paper and presents opportunities for future research.
Examples will be presented using the syntax of the O2 system, in which the framework was implemented.

2 Space and Time Primitives

This section defines the basic set of operators used to formulate typical spatio-temporal queries in databases. This
set ban be seen as a “tool box” from which further spatial, temporal or spatio-temporal operators may be defined.
All operators will be defined keeping in mind that data are managed according to the object oriented paradigm
– i.e., data is stored in objects, organized in class hierarchies. Query formulation in scientific databases can use
spatial, temporal, or spatio-temporal operators. The operands of these queries can be scalars, objects (temporal,
spatial or spatio-temporal) or sets thereof.

In our framework, spatio-temporal data is organized into spatial-temporal objects. These objects encapsulate
three basic components, which are complex objects themselves: conventional, spatial and temporal. The spatial
component describes the spatial properties of an object, which may vary according to the representation used (e.g.,
in geographic data, geometric description varies according to the scale used). The temporal component describes
the temporal properties of the object, and is here considered to be formed by time values. After [JCE

�

94], we
consider that time values can be represented by a chronon, an interval or temporal element. A temporal element is
a finite set of intervals. Throughout the paper we use the terms time values and timestamp as equivalent ones.

Assume A is a spatio-temporal object. Then, A =
�

CT, SpT, T � , where CT is the timestamped conventional
component of A; SpT is the timestamped spatial component of A; and T is the temporal component of A, repre-
senting its valid time. The valid time of an object is the time interval in which its semantic is true in the modeled
reality [JCE

�

94]. An object’s component (spatial or conventional) can assume many values along time. Thus,
SpT is a set of tuples

�������
, � � � , where

���	�
is the value of the spatial component at � � . Similarly, CT is a set of

tuples
��
��

, � � � , where

��

is the value of the conventional component at � � . Note that all � � do not intersect and are
contained in � .

For instance, consider a Road whose single conventional component is its name. Assume furthermore that the
road’s name has, at different times, assumed values ‘Rio-SP’ and ‘Dutra’, and the road’s geometry, represented by
object GL has also evolved temporally. Then, a simplified specification of the road could be:��


(Rio-SP, [t1-t5]), (Dutra, [t6-NOW]) � , 
 (GL1, [t1-t2]), (GL2, t3), (GL3,[t4-NOW]) � , [t1-NOW) �
this denotes, for instance, that at time t3 the road was called ‘Rio-SP’, and was described by geometry GL2. GL
itself is a complex object; for instance, the road may be represented by a polyline pl1 in a given scale s1, and by a
set of polygons pol1 in another scale s2. In this simple case, GL1=



(s1, pl1), (s2,pol1) � – note that each polyline

and set of polygons are complex objects as well. Computing the state of the road requires performing temporal

2



intersections, i.e., computing intersection of the temporal values. When several spatio-temporal phenomena are
involved, spatial operations only make sense when computed for attributes that co-exist in a certain time period.

Naturally, spatial and temporal objects are special cases of spatio-temporal objects without temporal and spatial
components, respectively. Then, if A is a spatial object, A =

�
[C], Sp � , where C is the conventional component of

A and Sp is the spatial component of A. If A is a temporal object, then A =
�
[CT], T � , where CT is the timestamped

conventional component of A and T is its valid time.
In what follows we denote an operator by OPER (A,B,C,...), where OPER is the operator’s name and A, B, C,

... are its operands.

2.1 Spatial Operators

Following [PS94], we classify spatial operators into orientation, metric and topological operators. We only con-
sider vectorial data (represented by points, lines and polygons, or sets thereof). All operators are applied to the
spatial component of database objects. This spatial component is retrieved by a special operator, named SP, defined
next.

Operator to retrieve spatial component – The SP operator returns the spatial component of its parameter A (a
database object). This component is a complex object that contains the spatial representation of A, and is composed
of non-spatial attributes (to hold specific information about the representation, such as scale or measurement
system) and a spatial attribute that enumerates the geometric objects that describe A’s geometry.

Orientation Operators – The orientation operators verify whether there exists a specific orientation relationship
between two sets of geometric objects [PS94], or deal with relative order in space [PTS94]. For simplicity we used
the following operators (based on definitions in [TP95] – note that several other operators can be built upon these):

� NORTH (A,B): returns true if all elements of A have a North relationship with all elements of B, and

� EAST (A,B): defined similarly as NORTH but with respect to East direction.

Metric Operators – The metric operators return a scalar that represents an intrinsic property of the analyzed
objects [Cil96]. We consider the following operators:

� AREA (A): computes the area occupied by object A (set of polygons)

� LENGTH (A): returns the length of A (polyline)

� PERIMETER (A): returns the perimeter of a set of polygons.

� DISTANCE (A,B): calculates the distance between two sets of geometric objects (points, lines, or polygons).

Topological Operators – The topological operators return true if there is a specific topological relationship be-
tween two set of geometric objects. Topological relationships are those which do not change with transformations
of scale, translation and rotation. [CdFvO93] showed that all binary topological relashionships can be expressed
by five operators (disjoint, touch, cross, overlap, in) and two functions (from, to). We base our primitive operators
on their work, extending them to sets of objects (instead of pairs of objects), as follows:

� DISJOINT (A,B): returns true if all elements of A have a disjoint relationship with all elements of B;
otherwise it returns false.

� TOUCH (A,B), OVERLAP (A,B), CROSS (A,B): return true if there is a pair a, b from A and B having,
respectively, a touch, overlap, cross relationship; otherwise it returns false.

� IN (A,B): returns true if for all a
� A there exists a b

� B such that a in b, otherwise it returns false.

3



2.2 Temporal Operators

Temporal operators can be unary or binary, returning time values, boolean values or objects. Operands are time
values, or objects (either temporal or spatio-temporal).

Temporal unary operators return a time value:

� TV (A): returns A’s temporal component.

� BEGIN (A), END (A): returns respectively A’s start time and end time.

� DAY(A), MONTH(A) and YEAR(A): A is a chronon and as such can be casted in the format day/month/year.
Those operators return respectively day,month and year.

� TWHEN (A): returns A’s valid time.

Temporal binary operators can return a boolean or time value, an object or a set of objects satisfying the tempo-
ral predicate. Our operators are based on [Sno95, S

�

94, VBH96, BVH96], They search for temporal relationships
between two time values (or timestamps). They can also be used to express other temporal relationships, e.g.,
those defined in [All83, RP92, GS89]. In the following definitions � ����� � and ��� ���	� denote, respectively, the start
time and end time of the operand (which is a time value); and t is a chronon.

� T BEFORE (A,B): returns true if � � (A) 
 � � (B); false otherwise.

� T OVERLAPS (A,B): returns true if � t (t �
����� �
� ); false otherwise.

� T EQUAL (A,B) returns true if A = B; false otherwise.

� T CONTAINS (A,B) returns true if � � ��� , t ��� ; false otherwise.

� T MEETS (A,B) returns true if � � (B) � � � (A) = 1, where 1 represents a chronon; false otherwise.

Other binary operators are the following:

� INTERVAL (s, e): returns an interval having start time s and end time e.

� T INTER (A,B): returns a time value corresponding to the temporal intersection between A and B.

� VSLICE (A, T): returns A’s states valid at time T.

2.3 Spatio-temporal Operators

These operators extend the spatial operators, defined in Section 2.1 by adding a temporal dimension. Their
operands are one or two spatio-temporal objects; or a spatio-temporal object and a spatial object.

Location-temporal Operator – This operator, denoted ST SP (A,T), returns the spatial representations of ob-
ject A valid at time T. That is, it returns a list of tuples

����� �
, � � � , where all � � are disjoint and cointained within

T.

Orientation-temporal Operators – These operators return a boolean value indicating whether there is or not a
specific orientation relationship between two objects (A and B), for all intervals of temporal intersection (in the
time domain T) between the spatial components of A and B. We consider the operators ST NORTH and ST EAST.

Metric-temporal Operators – These operators may involve one or two objects. In the first case the oper-
ator has two parameters – an object A and a time value T. In particular, we have defined: ST AREA (A,T),
ST LENGTH (A,T) and ST PERIMETER (A,T). They return, respectively, pairs

�
area, time � , �

length, time � ,�
perimeter, time � , for each state of the spatial component of A valid at T. The second case is represented by the

ST DISTANCE (A,B,T) operator returns the distance between the spatial components of A and B (valid at time
T) for all intervals of temporal intersection between these components.

4



Topologic-temporal Operators – These operators return a list of boolean values associated to the respective
intervals in which the location of object A and the location of object B are relatively constant during the time T.
That is, these boolean values indicate whether there is a specific topological relationship between the locations in
the considered time: ST DISJOINT, ST TOUCH, ST OVERLAP, ST INSIDE and ST CROSS.

2.4 Other Operators

Besides the spatial, temporal and spatio-temporal operators above, we must define a few additional operators
which are necessary to allow the formulation of spatio-temporal queries. These are:

� IS S TRUE (A): returns true if there is at least a true value in the list of boolean values A; false otherwise.

� IS A TRUE (A): returns true if all values in the list of boolean values A are true; false otherwise.

� GT (A,v), GE(A,v), LT(A,v), LE(A,v), EQ(A,v), NE(A,v): receive as a parameter a list A of numeric values
returning true if all elements of the list are, respectively, greater than, greater than or equal, lesser than,
lesser than or equal, equal, or different from the value v; false otherwise.

2.5 Queries

The operators form a basic set from which queries can be computed. We classify these queries as spatial, temporal
or spatio-temporal queries. Spatial queries deal with spatial relationships between objects. They can return spatial
attributes or attributes calculated from them, and are formulated in terms of spatial operators. Temporal queries
are those containing at least one temporal operator and no spatial operator. They deal with temporal relationships
between objects, besides dealing with the valid time of an object. Spatio-temporal queries deal with spatial rela-
tionships along time. They may return spatial components or metric values valid at a specific time, or valid time
of spatio-temporal relationships. These queries involve spatial and temporal predicates, using spatio-temporal
operators.

Next we show examples of representative queries, using a simple example which will be seen again in Sec-
tion 4. Consider a geographic database containing classes with the following entities: farms, rivers, roads and
telephone poles. We assume that farms may contain rivers and poles; and can be intersected by rivers or roads.
For simplicity we assume that all needed classes have been properly defined.

Recall that the implementation of spatial operators depends on the stored spatial representation (just as the
implementation of temporal operators depends on the time granularity considered). We assume that rivers and
roads are represented by polylines, farms by polygons and poles by points.

In what follows examples of spatial (SQ), temporal (TQ) and spatio-temporal queries (STQ1, STQ2 and
STQ3), are presented in an informal manner followed by a format similar to relational calculus using some of
the operators described earlier.

SQ: “Which are the rivers inside farm X”

r
�
r � River � INSIDE (SP(r), SP(X))

TQ: “Which are the farms that existed in 01/03/1990.”

f
�
f � Farm � T OVERLAPS (TV (f), 01/03/1990)

STQ1: “What is the foreseen area for expansion of farm A from 01/01/98 to 01/01/99?”

ST AREA (A, INTERVAL(01/01/98, 01/01/99)

STQ2: “In which time intervals, from 01/01/80 to 31/12/95, was road B adjacent to farm A?”

TWHEN (ST TOUCH (A, B, INTERVAL (01/01/80, 31/12/95)))

STQ3: “Which were the farms crossed by some road in 01/12/96.”

f
�
f � Farm � � r (r � Road � IS A TRUE (ST CROSS (f,r,01/02/96)))

Notice that these examples show that one can orthogonally apply temporal and spatial operators. Furthermore, the
time involved may be of several types.

5



3 The Kernel Classes

Our framework is based on providing users with a kernel of spatial and temporal class hierarchies, from which
scientific applications can be built using the object oriented concepts of inheritance, composition and polymor-
phism (for method redefinition). This section presents this kernel (classes and methods), as well as a basic set of
functions which allow implementing the operators. The kernel is based on a modification of the model proposed
in [Bot95], where spatial properties are geared towards geographic applications.

3.1 Classes and Methods

The kernel class hierarchies are rooted at three main classes (see Figure 1, which uses the OMT notation [R
�

91]):
Time, which allows associating different temporal properties to objects; Location, which allows associating differ-
ent spatial properties to objects; and Conventional (not shown in the Figure), which represents all classes of objects
that have neither spatial nor temporal properties. In this paper, we are concerned with the spatial and temporal
components of objects, and their interactions, and thus will not discuss aspects related to the implementation of
time for conventional components, since our primary focus is on the implementation of spatio-temporal facilities.

Since we are interested in Geosciences applications, spatial (and spatio-temporal objects) are generalized
by class GeoObject, and spatial properties are described in a class called Location (which basically generalizes
geometries). Notice that for other application domains the classes Location and GeoObject would receive other
names, but the functionality would remain basically the same.

The SP operator, defined previously, is specified as a method (sp) of GeoObject, being redefined in its sub-
classes.

Subclasses of Time (Event, Interval and TempElement) are used to represent the different kinds of timestamps
users may want to associate to temporal objects. The objects of class TempElement are composed of a list of ob-
jects of class Interval. An Interval object is composed of a tuple of Event objects which, in turn, allow representing
time instants (chronons). This hierarchy has methods year, month, day, begin, end, t before, t equal, t overlaps,
t contains, t meets and t inter, which implement the temporal operators of the same name defined in Section 2.2.

Temporal objects (instances of TempObject) are those with a temporal component (i.e., object of the class
Time). At any time, users can transform a non-temporal object (Conventional or SpatialObject) into a temporal
object by applying composition operators with objects from the Time hierarchy. The operators VSLICE and TV,
defined on section 2.2 are specified as methods vslice and tv of the class TempObject.

The class SpatialObject represents the non-temporal spatial objects, that is, objects that have a spatial compo-
nent (from class SP) and no Time component, whereas SpatioTempObject instances have both a temporal and a
spatial (SPT) component. This independence of a spatial object from its spatial description (generalized by class
Location) allows objects to share spatial properties. For instance, a phone pole and a transformer installed on the
pole may be represented by a point having the same (x,y) coordinates. This helps maintenance of spatial integrity
constraints.

The spatial component, represented by a SpatialObject ��� , is in fact a list of objects ��� ���	��
 ��� ����� , etc from
class Geom. Each Geom object ��� ��� �

, in turn, corresponds to one spatial representation of �
� , which, as we have
seen in the previous section, is composed of non-spatial attributes to keep representation-specific information and
a spatial attribute to define the representation geometry. Consider again the Road instance, but assume there is no
temporal variation, e.g.,��


(Rio-SP) � , 
 (GL1) � � , where GL1=



(s1, pl1), (s2,pol1) �
in this case, ‘Rio-SP’ is an instance of Conventional, GL1 is an instance of SpatialObject, and the tuple (s1,pl1) is
an instance of Geom.

The geometric description itself is described by the class hierarchy rooted at class Obj Geom – in the example,
pl1 and pol1 are instances respectively of classes Line and Polygon. A special method – select geometry – is used
to select, among the spatial representations of an object, the adequate Geom object appropriate to the users’ needs.

An instance of Polygon is defined as a list of geographic coordinates, which describe the polygon boundary;
an instance of Line is defined by a tuple of coordinates, that represent the line extremes; an instance of class Point
is a point in the bidimensional space � �

�
. The operators LENGTH, AREA, DISTANCE, DISJOINT, TOUCH, IN-

SIDE, OVERLAP, CROSS, NORTH and EAST, are implemented by methods of the same name of the Obj Geom
hierarchy.

6



PolygonLinePoint

Time

Event Interval

TempObject

SpatioTempObject

GeoObject

SpatialObject

Location

Sp SpT

Geom

Obj_Geom

GeomT

Obj_GeomT

TempElement

PointT LineT PolygonT

Figure 1: Basic data model

7



Special attention was given to the implementation of metric and topologic methods (length, area, distance,
disjoint, touch, inside, overlap), which were implemented using algorithms by O’Rourke [O’R94], and Preparata
and Shamos [PS85]. We point out that the use of computational geometry techniques to implement spatial opera-
tors is not new in the literature (e.g., [KBS91]). The difference, however, is that here they can be combined with
the temporal properties, which increases implementation complexity.

While the class SpatialObject describes non-temporal spatial objects, the class SpatioTempObject represents
spatio-temporal objects, i. e., whose components change along time. The characteristics of SpatioTempObjects
are similar to those of SpatialObjects as regards spatiality. However, they differ from the former because they also
have a temporal component. This is subsumed by classes SPT and GeomT. Like class Geom, GeomT corresponds
to a spatial representation, with the difference that its attributes are “temporalized”, i.e., a GeomT object is built
from composition of Geom objects and objects of the Time hierarchy. This allows keeping the evolution of spatial
representations through time. Obj GeomT and SPT classes follow the same reasoning, and for this reason will not
be described here.

We remark that we separate the spatial properties into Geom and Obj Geom classes to allow differentiating a
spatial property Geom from its representation Obj Geom. The same applies to GeomT and Obj GeomT.

3.2 Implementation of the Spatio-temporal Operators

We have already remarked on an example of implementation of a spatial operator (method touch). Here, we
comment on the implementation of the spatio-temporal operators. The operator ST SP, defined on section 2,
is mapped to methods st sp and loc of SpatioTempObject. Method loc returns the location of an instance of
SpatioTempObject at the time instant t (an Event object) whereas method st sp returns the temporal evolution of
the location of an instance of SpatioTempObject at a time t (Event, Interval, TempElement). In other words, loc
returns one spatial description, whereas st sp returns a list of tuples

�
Sp, Time � .

The spatio-temporal operators – ST LENGTH, ST DISJOINT, etc., defined on section 2.3, are implemented
as methods of SpatioTempObject. The unary spatio-temporal operators ST LENGTH, ST PERIMETER and
ST AREA are methods of SpatioTempObject invoked with a time parameter (t), being implemented in three main
steps:

1. The method st sp creates a list of tuples
� � 
 � � , where

�
is a set of Geom objects that compose the object’s

geometry, and � is the associated valid time, which must be contained in the specified time parameter (t).

2. A (length/ perimeter/ area) value is computed for the geometry
�

component of each tuple.

3. The final result is a list of tuples
�
value, � � , where for each value is associated the corresponding valid time

� .

The implementation of binary spatio-temporal operators – ST DISJOINT, ST DISTANCE, etc. – compre-
hends basically the following steps, when applied to sets of SpatioTempObject (or SpatialObject) X and Y:

1. For each object in X and in Y is created a list of tuples
� � 
 � � , in the same way as for the unary op-

erators. We suppose that when parameters objects of type SpatialObject then they are considered to have
undetermined valid time.

2. The valid times � of each element of these lists are processed for obtaining intervals of temporal intersec-
tion, using method t inter of the Time hierarchy.

3. For each interval of temporal intersection, the
�

objects valid at this interval are processed for the corre-
sponding spatial function (disjoint, distance, etc., being calculated a result.

4. A list with the final results is returned.

Take in consideration again the previous example of farms A and B, and now consider the temporal dimension,
and let us examine the disjoint operator. It is now used repeated times for the pairs of spatial descriptions that co-
exist in each interval of temporal intersection of the two objects. Consider, for example, the spatio-temporal
evolution presented in Figure 2, st disjoint (B,[t1,t3]) will return the values

�
false, t1 � , � true, t2 � , � false, t3 � .

8



t2

A

B
B

t1

A

t3

A

B

Figure 2: Farms A and B geometries between times t1 and t3

3.3 Functions

Some of the operators presented in section 2 were implemented as functions: orientation NORTH and SOUTH;
metric AREA, LENGTH and DISTANCE; topological DISJOINT, INSIDE, TOUCH, CROSS and OVERLAP;
temporal TWHEN and INTERVAL; boolean IS A TRUE and IS S TRUE; and comparators GT, GE, EQ, NE, LT
and LE.

The functions implementing the spatial operators invoke methods of the Geom and GeomT hierarchies having
the same name. Consider, for example, the function disjoint:

disjoint (A: list (Obj Geom), B: list (Obj Geom))
this function verifies if for all element objA of A and all element objB of B,

objA � disjoint (objB)

4 Using the Implemented Database

The kernel described in the previous section forms the basis for developing applications that require integrated
data analysis in the spatial and temporal dimensions. This section describes an example of use of the implemented
database for a geographic application. The problems and query specification were elaborated based on examples
given by researchers from the Faculty of Agricultural Engineering at the State University of Campinas.

4.1 Problem Overview

The application’s objective is to analyze land use in some areas in Brazil for agricultural purposes. This can be
used to, for example, detect unproductive farms, or monitor deforestation. Also, one can classify farms according
to existing infrastructure (next to or crossed by roads, served by electricity, etc.), places where to build roads, and
so on.

4.2 Class Definitions

Our running example in this section describes part of the database involving spatio-temporal classes Farms, Roads
and Poles. Farms are composed of Agricultural divisions (spatial units for crop rotation, soil preservation etc).
Each AgDivision may have had several crops over time, and distinct production data. The spatial representation
may vary with time, and so may the conventional attributes. Using our framework, classes Farm, Road and Pole
are derived from SpatioTempObject using inheritance. The corresponding class definitions are shown next, using
O2’s syntax [BDK92].

class Farm inherit SpatioTempObject type
tuple (name: string,

hist_division: list (tuple (lst_divisions: list(AgDivision),
t: time)))

end;

9



class AgDivision inherit SpatioTempObject type
tuple (name: string,

hist_crop: list (tuple (crop: string, t: time)),
hist_production: list (tuple (production: real, t: time)))

end;

class Road inherit SpatioTempObject type
tuple (name: string,

hist_road_type: list (tuple (road_type: string, t: time)))
end;

class Pole inherit SpatioTempObject type
tuple (number: integer,

type: string)
end;

name Farms: set (Farm);
name AgDivisions: set (AgDivision);
name Roads: set (Road);
name Poles: set (Pole);

We recall that multiple representations are allowed. The adequate representation is retrieved by the method
select geometry (or, in the spatio-temporal domain, t select geometry) when a query is processed. To simplify the
example, we assume that the representation used for a Farm is a list of polygons; for an Agricultural division, a
polygon; for a Road, a polyline represented by a list of lines; and for a Pole, a point.

4.3 Query Examples

This section uses OQL (O2’s query language) to show how some typical queries from the application considered
can be written by using the operators implemented. It it important to note however, that our implemented system
does not automatically generate OQL code given a user (natural language) query – i.e., we do not provide a user-
friendly interface. Automatic generation of OQL code given a spatio-temporal query language is nevertheless an
interesting open area, which requires much further research.

Each query was selected to show a specific characteristic of the framework. Queries involving spatial vari-
ables were defined to show examples of typical spatial queries; queries involving temporal data exemplify typical
temporal data management. Query 1 is a spatial query, query 2 is strictly temporal, and the remaining queries are
spatio-temporal, presented in increasing order of complexity.

Query 3 is an example of a spatial aggregate query that computes a spatial value (area), where the aggregate
is computed over time. Query 4 is a typical example of a spatial window query (find all objects within a given
window). However, temporal predicates are applied at the same time. Remark furthermore that query 4 shows
the use of two previously posed queries (q1, conventional, and q2, spatial) as parameters of a temporal operator
(twhen), which, in turn, is applied to a spatial – st inside – and a temporal – interval – operator. This shows that
the operators can be applied progressively in an orthogonal way, thereby allowing the progressive construction of
more complex operators and queries. The orthogonality of operators is further illustrated in query 5. In this last
example, the query combines spatial and conventional predicates to a temporal interval.

1. “Select the farms that contain electricity poles.”

f
�
f � Farm � p � Pole � p.type = “electricity” � INSIDE (SP(p),SP(f))

select f
from f in Farms, p in Poles
where p.kind = "electricity" and inside(p->sp, f->sp)

10



2. “Select the agricultural divisions that used to cultivate sugar cane before 01/07/1997.”

d
�
d � AgDivision � e � d.hist crop � d.crop = “sugar cane” � T BEFORE (BEGIN (TV(e), 01/07/1997)

select distinct d
from d in Divisions, e in d.hist_crop
where e.crop = "sugar cane" and

e->t->begin->t_before(event("1/7/1997"))

3. “What was the area occupied by farms from 01/01/97 to 01/01/98?”

ST AREA (f, INTERVAL (01/01/97,01/01/98))
�
f � Farm

select tuple (farm: f,
area:f->st_area(interval("01/01/97", "01/01/98")))

from f in Farms

4. “When did farm A lie in the rectangle delimited by the coordinates (1,1),(15,40)?”

TWHEN (ST INSIDE (X, TO OBJ ((1,1), (15,1), (15,40), (1,40))), INTERVAL (Beginning, Now))

define q1 as element (select f
from f in Farms
where f.name = "A")

define q2 as to_obj (list (tuple(x:1.0,y:1.0),
tuple(x:15.0,y:1.0),tuple(x:15.0,y:40.0),
tuple(x:1.0,y:40.0)))

twhen (q1->st_inside(q2, interval(Beginning,Now())))

5. “Select agricultural divisions that cultivated sugar cane and were adjacents on 01/02/97.”

q1 = d
�

d � Divisions � T OVERLAPS (TV(d), 01/02/1997) � � c (c � d.hist crop � T OVERLAPS
(TV(c),01/02/1997) � c.crop = “sugar cane”)

q2 = d1, d2
�
d1 � q1 � d2 � q1 � IS A TRUE (ST TOUCH (d1,d2,01/02/1997))

define q1 as select d
from d in Divisions
where d.t->t_overlaps(event("01/02/1997"))

define q2 as select distinct d
from d in q1,

c in d.hist_crop
where d.hist_crop != list() and

c.t->t_overlaps (event("01/02/1997"))
and c.crop= "sugar cane"

select tuple (Division1: d1, Division2: d2)
from d1 in q2,

d2 in q2
where d1 != d2 and

is_a_true(d1->st_touch(d2,event("01/02/1997")))

5 Related Work

As argued before, recent research have devoted more attention to incorporating time into spatial databases (e.g.,
[ATSS93, BVH96, Skj96, CT95, Lan93a, PW94, SB97, BJS97, Cho], but there is relatively few published work
on actual implementation of spatio-temporal models. We are aware of only two such works [PW94, SB97]. The

11



majority of the proposed approaches are focused towards modeling instead of implementation. Careful analysis
of some of those proposals show them to unfeasible to implement, requiring further modification to the proposed
models. Indeed, this was the case with the model upon which we base our implementation [Bot95].

Most spatio-temporal models have an associated query language (e.g., [BJS97, BVH96]. Alternatively, our
prototype manages spatio-temporal data through the definition and implementation of a basic set of classes and
operators on a OODB. Steiner and Norrie’s [SN97] research also uses such an approach, though dealing only with
temporal data.

Peuquet and Wentz’s work [PW94] uses a time based representation for spatio-temporal data and implements
temporal operators. However, they do not represent vector and MATRIX ?? data representation for geographical
data, which is rather common on current GISs.

Becker et al [BVH96] describe a temporal geographical model (T/OOGDM) which is based on the geograph-
ical model OOGDM. However, the implemented prototype does not provide temporal support. OOGDM deals
with raster and vector data, 2D and 3D data e define geometric and topological operators. T/OOGODM extends
OOGDM by supporting valid and transaction time. Even though it defines temporal operators it does not define
spatio-temporal operators. Furthermore the authors do not temporalize the geometric objects.

Bohlen et al [BJS97] define a spatio-temporal query language, named STSQL, based on the traditional rela-
tional model. STSQL’s model supports multiple transaction and valid times, but does not treat space and time in
a totally integrated manner. The actual implementation of STSQL, as originally proposed, is a rather complex, if
feasible, task.

Skjellaug and Berre’s model [SB97] extends spatial data with time, capturing the temporal nature of an object
as a whole as well as of all its individual properties - very much like what we propose in the paper. The model
defines the type T Object and the qualifies (temporal() which temporalizes its operand. T Object, like the type
TempObject we introduce in this paper, introduces the concept of lifespan. However, this time span has a fixed
representation (a list of temporal intervals). The authors consider three types of lifespan: transaction time lifespan,
valid time lifespan and version lifespan. The model defines a temporal ODL with temporal restrictions as of and
as best known. It does not define boolean spatial, spatio-temporal and temporal operators. The authors report that
the proposed model is being actually implemented.

6 Conclusions

This paper presented an extensible framework, based on extending an object-oriented database system with kernel
spatio-temporal classes, data structures and functions, to provide support for the development of spatio-temporal
applications. Different scientific applications can be implemented using this framework, by having the user specify
application-dependent classes as subclasses of the classes provided in the kernel.

The class kernel implements a set of basic operators which can be used to perform all typical spatial and
temporal queries described in the literature, where spatial data description is restricted to vector data in 2D. These
operators can be further combined to implement complex spatio-temporal queries.

In order to arrive at the operator set, we used results from other researchers (in the spatial and temporal operator
domains), referenced in the text. Furthermore, we extended their work by allowing distinct spatial representations
for a given real world object, which can thus even have different spatial evolutions in time. A lake, for instance,
can be represented by a polygon or by a point (polygon centroid) according to the scale adopted. The lake borders
may suffer variation with time, without affecting the centroid – in this case, the lake is a spatio-temporal object
with two different spatial representations, which present distinct temporal evolution characteristics. This, in turn,
presents several interesting implementation problems which we were able to solve by implementing methods to
choose the adequate representation for a given user context.

This framework is being incorporated into the UAPE environment [OPM97], which allows users to design
databases for environmental applications. Another work under way concerns the development of integrated spatio-
temporal index structures, to optimize queries. There are several open issues for future work. One of them, as
remarked, is improving the interface. Another concerns extending spatio-temporal handling to raster data, maybe
by extending the work of [WB97]. Finally, other directions concern the update of spatio-temporal data, and
integration of heterogeneous databases.

12



Acknowledgments

Glaucia Faria is currently with Microsoft Corp. (glauciaf@exchange.microsoft.com). Claudia Bauzer Medeiros is
with State University of Campinas (cmbm@dcc.unicamp.br). This work was partially supported by grants from
FAPESP, CNPq, the European Community and by the SAI PRONEX program.

References

[A
�

94a] E. Apolloni et al. Requirements and Design Issues of Spatial Data Handling Systems. In Advances
in Database Systems: Implementations and Applications, pages 49–68. Springer Verlag Courses and
Lectures 347, 1994.

[A
�

94b] M. Arya et al. QBISM: Extending a DBMS to Support 3D Medical Images. In Proc Data Engineering
Conference, pages 314–325. IEEE, 1994.

[Abi97] S. Abiteboul. Querying Semi-structured Data. In Proc. ICDT Conference, 1997.

[AKS
�

93] G. Anogianakis, A. Krotopoulou, P. Spirakis, D. Terpou, and A. Tsakalidis. Brain Data Base - BDB.
In Proc 4th International DEXA Conf., pages 361–364, 1993.

[All83] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM,
16(11):832–843, 1983.

[AS91] W. Aref and H. Samet. Extending a DBMS with Spatial Operations. In Proc. 2nd Symposium Spatial
Database Systems, pages 299–317. Springer Verlag Lecture Notes in Computer Science 525, 1991.

[ATSS93] K.K. Al-Taha, R. T. Snodgrass, and M. D. Soo. Bibliography on Spatiotemporal Databases. ACM
SIGMOD Record, 22(1):59–67, March 1993.

[AW96] T. Andjelic and M. Worboys. Version Management for GIS in a Distributed Environment. In David
Parker, editor, Innovations in GIS 3. Taylor and Francis, 1996.

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-oriented Database System.
Data Management Systems. Morgan Kaufmann Publishers, 1992.

[BJS97] M. Bohlen, C. S. Jensen, and B. Skjellaug. Spatio-Temporal Database Support for Legacy Applica-
tions. Technical Report TR-20, TimeCenter, July 1997.

[Bot95] M. A. Botelho. Incorporating spatio-temporal facilities in object oriented databases. Master’s thesis,
Institute of Computing, UNICAMP, 1995. In Portuguese.

[BVH96] L. Becker, A. Voigtmann, and K. H. Hinrichs. Temporal Support for Geo-Data in Object-Oriented
Databases. In Proc. of DEXA’96, volume 1134 of LNCS, pages 79–93. Springer, 1996.

[BX94] M. Batty and Y. Xie. Modelling inside GIS: Part I. Model Structures, Exploratory Spatial Data
Analysis and Aggregation. International Journal of Geographical Information Systems, 8(3):291–
308, 1994.

[BZ91] D. Benson and G. Zick. Symbolic and Spatial Database for Structural Biology. In Proc. OOPSLA
91, pages 329–339, 1991.

[CdFvO93] E. Clementini, P. di Felice, and P. van Oosterom. A Small Set of Formal Topological Relationships
Suitable for End-User Interaction. In Proceedings of the 3rd International Symposium on Large
Spatial Databases, number 692 in LNCS, pages 277–295, 1993.

[Cho] Chorochronos Home Page. URL: http://www.dbnet.ece.ntua.gr/ choros/.

[Cil96] M. A. Cilia. Active Databases as a Support for Topological Restrictions in Geographical Information
Systems. Master’s thesis, Institute of Computing, UNICAMP, March 1996. In Portuguese.

13



[CT95] C. Claramunt and M. Thériault. Managing Time in GIS - An Event-Oriented Approach. In Proc. of
the International Workshop on Temporal Databases, Zurich, Switzerland, September 1995. Springer.

[Far98] G. Faria. A Spatio-Temporal Database for Geographical Information Systems. Master’s thesis, Insti-
tute of Computing, UNICAMP, 1998. In Portuguese.

[FJP90] J. French, A. Jones, and J. Pfalz. Summary of the Final Report of the NSF Workshop on Scientific
Database Management. ACM Sigmod Record, 19(4):32–40, 1990.

[Gou93] G. Gould. Why Not? The Search for Spatiotemporal Structure. Environment & Planning A, pages
48–55, 1993. Anniversary issue.

[GR93] O. Gunther and W-F Riekert. The Design of GODOT: an Object-oriented Geographic Information
System. IEEE Data Engineering Bulletin, pages 4–9, september 1993.

[GS89] H. Gunadhi and A. Segev. Query Optimization in Temporal Databases. In Proc. of the Fifth In-
ternational Conference on Statistical and Scientific Database Management Systems, pages 131–147,
1989.

[JCE
�

94] C. S. Jensen, J. Clifford, R. Elmasri, S. Gadia, P. Hayes, and S. Jajodia. Consensus Glossary of
Temporal Database Concepts. SIGMOD Record, 23(1):52–64, 1994.

[KBS91] H. Kriegel, T. Brinkhoff, and R. Schneider. The Combination of Spatial Access Methods and Com-
putational Geometry in Geographic Database Systems. In Proc 2nd Symposium Spatial Database
Systems, pages 5–22. Springer Verlag Lecture Notes in Computer Science 525, 1991.

[KV92] M. Kraak and E. Verbree. Tetrahedrons and Animated Maps in 2D and 3D Space. In Proc 5th
International Symposium on Spatial Data Handling, pages 63–71, 1992. Volume 1.

[Lan93a] G. Langran. Time in Geographic Information Systems. Taylor & Francis Ltda, 1993.

[Lan93b] G. Langran. Time in Geographical Information Systems. Taylor and Francis, 1993.

[MJ94] C. B. Medeiros and G. Jomier. Using Versions in GIS. In Proc. International DEXA Conference,
pages 465–474, 1994. Springer Verlag Lecture Notes in Computer Science 856.

[NTE92] R. Newell, D. Theriault, and M. Easterfieldy. Temporal GIS - modeling the evolution of spatial data
in time. Computers and Geosciences: An international journal, 18(4):427–434, 1992.

[OPM97] J. Oliveira, F. Pires, and C. B. Medeiros. An Environment for Modelling and Design of Geographic
Applications. GeoInformatica, 1(1):29–58, 1997.

[O’R94] J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.

[Peu93] D. Peuquet. What, Where and When - a Conceptual Basis for Design of Spatiotemporal GIS
Databases. In Proc. ACM/ISCA Workshop on Advances in Geographic Information Systems, pages
117–122, 1993.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry - An Introduction. Springer-Verlag, 1985.

[PS94] D. Papadias and T. Sellis. Quality Representation of Spatial Knowledge in Two-Dimensional Space.
The VLDB Journal, 3(4), 1994.

[PTS94] D. Papadias, Y. Theodoridis, and T. Sellis. The Retrieval of Direction Relations Using R-trees. In
Proc. of the 5th International Conference on Database and Expert Systems Applications, number 856
in LNCS, 1994.

[PW94] D. Peuquet and E. A. Wentz. An Approach for Time-based Spatial Analysis of Spatio-Temporal Data
. In Advances in GIS Research, pages 489–504, 1994.

[R
�

91] J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

14



[RP92] J. F. Roddick and J. D. Patrick. Temporal Semantics in Information Systems - A Survey. Information
Systems, 17(3):249–267, 1992.

[S
�

94] R. T. Snodgrass et al. An Evaluation of TSQL2. Commentary, University of Arizona, Department of
Computer Science, October 1994. In: The TSQL2 Language Specification.

[SB97] B. Skjellaug and A-J Berre. Multi-dimensional Time Support for Spatial Data Models. Technical
Report 253, Institutt for Informatikk, Universitetet i Oslo, May 1997.

[SK96] K. C. Sevcik and N. Koudas. Filter trees for managing spatial data over a range of size granularities.
In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, Proceedings of the 22nd
VLDB Conference, pages 16–27, September 1996.

[Skj96] B. Skjellaug. Time and Temporal Data Management - Operationalization in a Tempora l GIS. Tech-
nical Report STF 40 A 96063, Department of Informatics, University of Oslo, November 1996.

[SN97] A. Steiner and M. C. Norrie. Implementing Temporal Databases in Object-Oriented Systems. In
Proceedings of 5th Intl. Conf. on Database Systems for Advanced Applications, Melbourne, Australia,
April 1997.

[Sno95] R. T. Snodgrass. Language specification. In R. T. Snodgrass, editor, The TSQL2 Temporal Query
Language, chapter 32, pages 599–603. Kluwer Academic Publishers, 1995.

[SS94] R. Snodgrass and M. Soo. Bibliography on Spatiotemporal Databases. International Journal of
Geographical Information Systems, 8(1):95–103, 1994.

[SV92] M. Scholl and A. Voisard. Geographic Applications – an Experience with O2. In F. Bancilhon,
C. Delobel, and P. Kanellakis, editors, Building an Object-oriented System – the Story of O2. Morgan
Kaufmann, California, 1992.

[SW95] P. Story and M. Worboys. A Design Support Environment for Spatio-Temporal Database Applica-
tions. In Proc COSIT, Springer Verlag Lecture Notes in Computer Science 988, pages 413–430,
1995.

[TP95] Y. Theodoridis and D. Papadias. Range Queries Involving Spatial Relations: A Performance Analysis.
In Proc. of the 2nd European Conf. on Spatial Information Theory, number 988 in LNCS, pages 537–
551, 1995.

[VBH96] A. Voigtmann, L. Becker, and K. H. Hinrichs. Temporal extensions for an Object-Oriented Geo-Data-
Model. Technical Report Bericht Nr. 6/96-I, Institut für Informatik, Münster, Germany, 1996.

[WB97] N. Widmann and P. Baumann. Towards Comprehensive Database Support for Geoscientific Raster
Data. In Proceedings of the V Intl. ACM GIS Workshop, pages 54–57, 1997.

15


