
João Sávio Ceregatti Longo

“Management of integrity constraints for multi-scale

geospatial data”

“Gerenciamento de restrições de integridade para

dados geoespaciais multi-escala”

CAMPINAS

2013

i

ii

FICHA CATALOGRÁFICA ELABORADA POR
MARIA FABIANA BEZERRA MULLER - CRB8/6162

BIBLIOTECA DO INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E
COMPUTAÇÃO CIENTÍFICA - UNICAMP

 Longo, João Sávio Ceregatti, 1987-
 L864g LonGerenciamento de restrições de integridade para dados

geoespaciais multi-escala / João Sávio Ceregatti Longo. –
Campinas, SP : [s.n.], 2013.

 LonOrientador: Claudia Maria Bauzer Medeiros.
 LonDissertação (mestrado) – Universidade Estadual de Campinas,

Instituto de Computação.

 Lon1. Banco de dados - Gerência - Software. 2. Multiescala. 3.

Integridade de dados. 4. Sistemas de informação geográfica. I.
Medeiros, Claudia Maria Bauzer,1954-. II. Universidade Estadual de
Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em inglês: Management of integrity constraints for multi-scale
geospatial data
Palavras-chave em inglês:
Database management - Software
Multiscale
Data integrity
Geographic information systems
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Claudia Maria Bauzer Medeiros [Orientador]
Eliane Martins
Luciano Antonio Digiampietri
Data de defesa: 13-03-2013
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

http://www.tcpdf.org

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

Management of integrity constraints for multi-scale

geospatial data

João Sávio Ceregatti Longo1

March 13, 2013

Examiner Board/Banca Examinadora :

• Prof.ª Dr.ª Claudia Maria Bauzer Medeiros (Supervisor/Orientadora)

• Prof.ª Dr.ª Eliane Martins

Institute of Computing - UNICAMP

• Prof. Dr. Luciano Antonio Digiampietri

Escola de Artes, Ciências e Humanidades - USP

• Prof.ª Dr.ª Ariadne Maria Brito Rizzoni Carvalho

Institute of Computing - UNICAMP (Substitute/Suplente)

• Dr. Alexandre Camargo Coutinho

CNPTIA - EMBRAPA (Substitute/Suplente)

1Financial support: scholarships FAPESP (process 2011/14280-0, 2012–2013) and CNPq (process
133037/2011-8, 2011–2012)

vi

Abstract

Work on multi-scale issues concerning geospatial data presents countless challenges that

have been long attacked by GIScience (Geographic Information Science) researchers. In-

deed, a given real world problem must often be studied at distinct scales in order to be

solved. Another factor to be considered is the possibility of maintaining the history of

changes at each scale. Moreover, one of the main goals of multi-scale environments is to

guarantee the manipulation of information without any contradiction among the different

representations. The concept of scale goes beyond issues of space, since it also applies,

for instance, to time. These problems will be analyzed in this thesis, resulting in the fol-

lowing contributions: (a) the proposal of the DBV (Database Version) multi-scale model

to handle data at multiple scales from a database perspective; (b) the specification of

multi-scale integrity constraints; (c) the implementation of a platform to support model

and constraints, tested with real multi-scale data.

vii

Resumo

Trabalhar em questões relativas a dados geoespaciais presentes em múltiplas escalas apre-

senta inúmeros desafios que têm sido atacado pelos pesquisadores da área de GIS (Sistemas

de Informação Geográfica). De fato, um dado problema do mundo real deve frequente-

mente ser estudado em escalas distintas para ser resolvido. Outro fator a ser considerado

é a possibilidade de manter o histórico de mudanças em cada escala. Além disso, uma das

principais metas de ambientes multi-escala é garantir a manipulação de informações sem

qualquer contradição entre suas diferentes representações. A noção de escala extrapola

inclusive a questão espacial, pois se aplica também, por exemplo, à escala temporal. Estes

problemas serão analisados nesta dissertação, resultando nas seguintes contribuições: (a)

proposta do modelo DBV (Database Version) multi-escala para gerenciar de forma trans-

parente dados de múltiplas escalas sob a perspectiva de bancos de dados; (b) especificação

de restrições de integridade multi-escala; (c) implementação de uma plataforma que su-

porte o modelo e as restrições, testada com dados reais multi-escala.

viii

Acknowledgements

First, I would like to thank my advisor professor Claudia Bauzer Medeiros for the oppor-

tunity, help, great advices and corrections.

I would like to thank my mother Isabel, my family, my girlfriend Karina and my

friends (in particular Felipe) for all support. Their support was very important for the

development of my work.

I would like to thank professor André Santanchè, professor Geneviève Jomier and all

members of the Laboratory of Information Systems (LIS) for the many good comments

and help to my work.

I would like to thank colleagues, faculty and staff of the Institute of Computing and of

UNICAMP, for all the attention and companionship that created a healthy environment

for the development of this research.

I would like to thank Dr. Alexandre Continho from CNPTIA – Embrapa, who provided

real world multi-scale data and feedback for our case study.

I would also like to thank many other people that were not mentioned but also believed,

supported, participated, collaborated with this work and nevertheless remain anonymous

in these acknowledgments.

Finally, this work was financed by FAPESP (grant 2011/14280-0) and CNPq (grant

133037/2011-8) and partially by the Microsoft Research FAPESP Virtual Institute (NavS-

cales project), the Brazilian Institute for Web Sciences Research, CNPq (MuZOO project),

PRONEX-FAPESP2, CAPES (AMIB project), as well as individual grants from CNPq.

2Model and Methods in eScience for the Life and Agricultural Sciences

ix

Contents

Abstract vii

Resumo viii

Acknowledgements ix

1 Introduction 1

2 Basic concepts and related work 4

2.1 Management of multi-scale geospatial data 4

2.1.1 Overview . 4

2.1.2 MRDBs . 5

2.2 Some issues on scale variation . 6

2.2.1 Spatial scale variation . 6

2.2.2 Temporal scale variation . 6

2.3 The DBV model . 7

2.4 Integrity Constraints (ICs) . 8

2.4.1 Specification of integrity constraints 8

2.4.2 Management of integrity constraints 9

2.4.3 Geospatial and temporal integrity constraints 9

2.4.4 Conclusion . 10

3 The multi-scale model and inter-scale constraints 11

3.1 DBV multi-scale model . 11

3.1.1 Overview . 11

3.1.2 The Model . 12

3.1.3 A simple example . 14

3.1.4 Aggregation . 15

3.2 Multi-scale integrity constraints . 16

3.2.1 Spatial MS-ICs . 18

x

3.2.2 Temporal MS-ICs . 21

3.2.3 Shared MS-ICs . 22

3.3 Conclusion . 23

4 Implementation details 24

4.1 DBV multi-scale platform . 24

4.2 Platform functionality . 26

4.2.1 Creating a new scenario . 26

4.2.2 Accessing a DBV . 26

4.2.3 Adding or modifying a logical version of an object in a DBV 28

4.2.4 Checking multi-scale consistency of the current scenario 28

4.3 DBV multi-scale web manager . 30

4.4 Conclusion . 31

5 Case study 33

5.1 User interactions . 33

5.2 Underlying implementation issues . 34

5.3 Experiments . 37

5.3.1 Experiment 1 . 38

5.3.2 Experiment 2 . 38

5.3.3 Experiment 3 . 39

5.4 Conclusion . 39

6 Conclusions and extensions 41

6.1 Conclusions . 41

6.2 Extensions . 42

Bibliography 43

xi

List of Figures

2.1 UNICAMP represented in three spatial scales 6

2.2 Derivation tree of database versions . 7

3.1 Example of our approach to maintain versions of multi-scale geospatial data 12

3.2 Our basic model in UML . 13

3.3 Multi-scale versioning problem example . 14

3.4 (a) Multiversion objects. (b) Physical versions and their geometry. (c)

Logical versions from the example . 15

3.5 Example of aggregation using the DBV multi-scale model 16

3.6 (a) Multiversion objects. (b) Aggregations. (c) Logical versions 16

3.7 MS-ICs hold across consecutive scales . 17

3.8 Geometry dimensions . 19

3.9 Topological relationships and applicable groups of relationships [32] 20

3.10 Directional relations considering one point per object [37] 21

3.11 Temporal relationships for intervals defined by Allen [1]. Adapted by [15] . 22

4.1 Architecture of the platform . 25

4.2 Entities of the platform described in UML 26

4.3 Accessing a DBV . 27

4.4 Adding or updating a logical version of an object 29

4.5 Checking multi-scale consistency of the current scenario 29

4.6 DBV multi-scale web manager . 31

4.7 Screen copy of the interface of the DBV multi-scale web manager 32

5.1 Proposed scenarios . 33

5.2 Scenario 0 . 34

5.3 Scenario 0.1 . 35

5.4 Scenario 0.1.1 . 35

5.5 Scenario 0.1.2 . 36

5.6 Scenario 0.1.1 with more details . 36

5.7 Derivation trees of the case study . 37

xii

5.8 All scenarios are consistent in experiment 1 38

5.9 Consistency error messages of experiment 2 39

5.10 Consistency error message of experiment 3 40

xiii

Chapter 1

Introduction

A major challenge when dealing with geospatial data are the many scales in which such

data are represented. For instance, national mapping agencies produce multi-scale geospa-

tial data and one of the main difficulties is to guarantee consistency across the scales [46].

Indeed, geospatial data can be associated with static or dynamic contexts (e.g. mobile

applications). In the second case, we can also consider multiple temporal scales, for in-

stance, in units of minutes, hours, days or even years. Temporal scales are important to

understand the evolution of a phenomenon or predict what may happen in the future [42].

To clarify the context, let us consider a multi-scale example. Assume a situation in

which several groups of people are working in a given geographic region, in a transporta-

tion application. In a given spatial scale, say, 1:1000, traffic engineers would analyze local

(e.g., street) conditions. In another scale, e.g., 1:100000, the concern would be inter-city

transportation. In each scale, new objects (e.g., houses, streets, roads) may be inserted,

deleted or modified. This poses several challenges, some of which are attacked here.

It is interesting to materialize multi-scale data in a few choice scales due to modelling

requirements and application efficiency, which influence the best scale to be used [2].

Depending on the case, it may be necessary to vary the scales for better data visualization

or for different types of analysis, which can result in loss of valuable information. For

instance, consider two different spatial scales A and B such that A is larger than B. Each

object B will contain one or more corresponding objects of A, but the reverse may be

not true [7]. Moreover, inconsistencies may occur by varying the scale. Modifications

in objects in a scale (e.g., geometry, localization) can make the data in other scales

inconsistent.

Relying on these facts, multi-scale environments should ensure the availability of in-

formation without any contradiction across scales [34]. Databases must maintain correct

and coherent data, and for this, integrity constraints (ICs) should be defined and checked

in update operations to guarantee the quality of data [47, 43]. These issues have been

1

2

subject to several research initiatives, that point out many open problems and challenges.

In order to meet some of these challenges, first we propose an approach called DBV

(Database Version) multi-scale model [27] to manage multiple scales of geospatial objects.

It is based on extending the DBV model [8, 22] to provide support to flexible MRDB

(Multi-Representation Databases) structures (data structures to store and link different

objects of several representations of the same entity or phenomenon [44]). As will be

seen, our extension (and its implementation) provides the following advantages to other

approaches: (a) it supports keeping track of evolution of objects at each scale, and across

scales, simultaneously; (b) it provides management of multi-scale objects saving storage

space [8], as opposed to approaches in which evolution requires replication; and (c) it

supports evolution according to scale and to shape, where the latter can be treated as

alternative versioning scenarios.

Second, we define some multi-scale integrity constraints (shorthand MS-ICs) to be

applied to the DBV multi-scale model. These constraints define conditions under which

two states of the world, represented in distinct spatial and/or temporal scales, are jointly

consistent.

To validate these ideas, we have implemented a plataform to support the DBV multi-

scale model along with the specified MS-ICs. This allows the management of multi-scale

data and constraint checking at runtime. Moreover, this plataform has been tested with

real multi-scale data.

The goal of this work is investigate the following issues:

• Management of multi-scale data

– How to manage multi-scale data?

– How to trace real world evolution?

• Multi-scale consistency

– How to guarantee multi-scale consistency?

As a consequence, the contributions of this work are the follows:

• the proposal of the DBV multi-scale model;

• the specification of multi-scale integrity constraints;

• the implementation of a platform to support model and constraints, tested with real

multi-scale data

3

This work gave origin to the follow publication: J. Longo, L. Camargo, C. Medeiros,

and A. Santanchè. Using the DBV model to maintain versions of multi-scale geospatial

data. In Advances in Conceptual Modeling, volume 7518 of Lecture Notes in Computer

Science, pages 284-293. Springer Berlin Heidelberg, 2012.

Chapter 2

Basic concepts and related work

2.1 Management of multi-scale geospatial data

2.1.1 Overview

Literature on the management of geospatial data at multiple scales concentrates on two di-

rections: (a) generalization algorithms and (b) multi-representation databases (MRDBs).

The first are mostly geared towards handling multiple spatial scales via algorithmic pro-

cesses, that may, for instance, start from predefined scales, or use reactive behaviors

(e.g., agents) to dinamically compute geometric properties. MRDBs store data at some

predefined scales and link entities of interest across scales, or multiple representations

within a scale. These two approaches roughly correspond to Zhou and Jones’ [49] multi-

representation spatial databases and linked multiversion databases1.

While generalization approaches compute multiple virtual scales, approaches based

on data structures, in which we will concentrate, rely on managing stored data. From

this point of view, options may vary from maintaining separate databases (one for each

scale) to using MRDBs, or MRMS (Multiple Representation Management Systems) [21].

MRDBs and MRMS concern data structures to store and link different objects of several

representations of the same entity or phenomenon [44, 26]. They have been successfully

reported in, for instance, urban planning, or in the aggregation of large amounts of geospa-

tial data and in cases that applications require data in different levels of detail [34, 23, 38].

Oosterom et al. [35], in their multi-representation work, also comment on the possibility

of storing the most detailed data and computing other scales via generalization. This

presents the advantage of preserving consistency across scales (since all except for a basis

are computed). Generalization solutions vary widely, but the emphasis is on real time

computation, which becomes costly if there are continuous updates to the data – e.g., see

1We point out that our definition of version is not the same as that of Zhou and Jones

4

2.1. Management of multi-scale geospatial data 5

the hierarchical agent approach of [41] or the multiple representations of [5].

2.1.2 MRDBs

MRDBs (Multiple Representation Databases) are data structures to store and link differ-

ent objects of several representations of the same entity or phenomenon [44]. There are

plenty of benefits to this approach, according to Sarjakoski [44]:

• Maintenance is flexible, since more specific level updates can be propagated to the

lower resolution data;

• The links between objects of different levels of representation can provide a basis

for consistency and automatic error checking;

• MRDBs can be used for multi-scale analysis of spatial information, such as compar-

ing data at different resolution levels.

According to Deng et al. [14], there are three main variants to link objects in an

MRDB. The first one is called attribute variant and all data are stored in one dataset.

The second variant, named bottom-up variant, considers the existence of two or more

datasets, linked by an additional attribute that links the objects of the actual scale to

those of the immediately smaller scale. The top-down variant, the third approach, is

similar to the second, except for the fact that the link points to the immediately larger

scale.

Moreover, Deng et al. [14] considered linking between different scales in order to

establish an MRDB consistent structure. They cited the possible types of links between

objects of different scales: 0-to-1, 1-to-0, 1-to-1, n-to-1 and n-to-m. The first value refers

to objects of larger scales, while the second refers to the smaller ones. For each type of

relationship the authors proposed an approach to solve the inconsistencies. Similarly, this

kind of problem was dealt in Bobzien et al.’s work [3].

As an example of implementation, Parent et al. [39] present MurMur, an effort to

develop a manipulation approach to geographic databases that have multiple representa-

tions. Additional research on MRDB structures includes Burghardt et al.’s work [4], which

shows how to improve the creation of maps via automated generalization for topographic

maps and multi-representation databases.

Although MRDB structures are used to treat multi-representation problems, this

work proposes to deal with multi-scale problems, a subset of those related to multi-

representations. Our proposal allows keeping the history of changes within and across

scales, which is not directly supported by MRDBs.

2.2. Some issues on scale variation 6

2.2 Some issues on scale variation

We have analyzed some consequences of varying spatial and temporal scales. In fact,

variations on spatial and temporal scale are best separately represented, “due to the

inherently different nature of temporal and spatial dimensions” [7].

2.2.1 Spatial scale variation

Depending on the proximity between geospatial objects, information or relationships be-

tween them (contains, overlaps, disjoint, etc) can be easily lost in spatial scale changes [24].

Take the relationship contains as an example, and consider the fact that the University

of Campinas (UNICAMP) contains many institutes. UNICAMP could be represented in

three scales: 1:10k, 1:20k and 1:1M, as Figure 2.1 shows. In the largest scale, UNICAMP

represented by a set of polygons while in the smallest there is only a point. This occurs

because, as the scale is reduced, the complexity of the objects is reduced and/or some

information may be lost. For instance, in the scale 1:20k we do not know what is inside

UNICAMP. In other words, the initial relationship “UNICAMP contains institutes” is no

longer visible.

Figure 2.1: UNICAMP represented in three spatial scales

2.2.2 Temporal scale variation

Similarly, important data may be lost by varying the temporal scale. The main example

is the summarization of time series, which requires aggregation and elimination of data.

Again, changing scale will eliminate details, outliers, and only aggregate values will

be considered.

The same occurs if events along time are distributed separately – e.g., seismic events.

Then, their visualization in a map, through time, will either require a video (no temporal

aggregation) or the display of aggregate values in a static map.

2.3. The DBV model 7

2.3 The DBV model

The DBV (Database Version) model is an approach to “maintain consistency of object

versions in multiversion database systems” [8]. A DBV represents a possible state or ver-

sion of the database [8]. It can be seen as a virtual view of a database, where the database

stores multiple versions of objects. This view shows just one version of each object, so

that users can work at each DBV as if they were handling a consistent (monoversion)

state of the database. Temporal versioning is just one type of version. The DBV model

considers a version to be any stored modification of a (database) state. Thus, a given real

world object may be versioned in time, but also different simultaneous representations

are versions of that object.

In this model, there are two levels: the logical and the physical. The first corresponds

to the user view of each database state (DBV) and is represented by the logical versions.

The second is represented by the physical versions of the stored objects.

A multiversion object represents one single entity in the real world – any attribute

(geometry, color, etc) may change; as long as the experts consider it to be the same

entity, it is not assigned a new id. Let us consider a multiversion object o, e.g. a car, with

two different models, one painted blue and other red. Internally, the database will store

the physical versions of o as pv1 and pv2. Logically, pv1 will appear in one DBV and

pv2 in another. The physical database will have cars of both colors, but from a logical

(user’s) point of view, only one color exists.

The creation of versions is recorded in a derivation tree as Figure 2.2 shows. Each

version is associated with a stamp value (0, 0.1, etc). The derivation tree indicates

how DBVs are derived from each other, thus supporting change traceability. Derivations

always reflect to some kind of update. For instance, Figure 2.2 shows that DBV d1 (stamp

0.1) is derived from d0 (stamp 0) and that d2 (stamp 0.1.1) and d3 (stamp 0.1.2) are

derived from d1. By definition, there is no data in stamp 0 (root).

Figure 2.2: Derivation tree of database versions

2.4. Integrity Constraints (ICs) 8

One of the main advantages of using the DBV approach is that only the changes must

be stored. Data that are not modified are shared from previous DBVs through semantics

of the version stamps. For instance, suppose we have to access all logical versions related

to d2. It is also necessary to look up at all previous DBVs up to the root – d1, since

each version stores only the data changes. More information about the DBV model can

be seen in [8, 22].

2.4 Integrity Constraints (ICs)

Integrity in the context of database systems is a property to ensure that there is no logical

contradiction with a model of reality. For this, integrity constraints (IC) should be defined

to guarantee that the database understands the semantics required by the model [28].

An integrity constraint is an assertion that intends to prevent the insertion of incorrect

data into a database [43].

2.4.1 Specification of integrity constraints

There are several ways to specify integrity constraints – three examples (among many)

are: Event-Condition-Action (E-C-A) rules in an active database, ontologies (using some

constraint language), or some kind of mathematical formalism.

E-C-A rules are a means of specifying constraints in active databases. Here, the

rules are stored with the data, and the database management system monitors Events,

upon which Conditions (the constraints) are checked and Actions are taken. Examples

of use of E-C-A rules to maintain constraints appear in Medeiros and Cilia [31] and

Wang and Reinhardt [48]. The first specified the constraints using logics and the second

used Constraint Decision Table (CDT). While the E-C-A approach combines constraint

declaration with management mechanism, other approaches are more concerned with the

specification itself, leaving the maintenance to be treated within an application.

The use of ontologies to specifying constraints appears in, for instance, Mäs et al. [29].

According to the authors, the incorrect use of data may be prevented by using ontologies,

which help users in the understanding of concepts and provide a better understanding

of the shared data. Thus, they proposed the utilization of SWRL (Semantic Web Rule

Language), which is a combination of OWL (Web Ontology Language) with RuleML (Rule

Markup Language), to specify ICs.

Mathematical formalism (e.g., logics) are a common means of specifying ICs. An

example is Currim and Ram’ work [12], which considers that the set of ICs are explicitly

modeled during the database conceptual modeling design.

2.4. Integrity Constraints (ICs) 9

There is also the approach using OCL (Object Constraint Language), which is “a

formal language used to describe expressions on UML models” [33]. Some disadvantages

of UML are described in [36], such as: “not suitable for automated analysis of verification

and validation, etc of architecture” and “UML constructs lack in formal semantics and

therefore may become a source of ambiguity, inconsistency in some cases”.

Integrity constraints in Multiversion Databases (MVDB) are discussed in [16, 19, 18,

17]. These papers use logics. Basically, an MVDB is consistent if each DBV is consistent

and DBVs are mutually consistent [18]. Integrity constraints in an MVDB do not consider

ICs across scales, which are the focus of this paper.

In this work, we define constraints using logics, combined with special operators de-

fined by us.

2.4.2 Management of integrity constraints

Management of integrity constraints can be approached at various levels, starting from

their specification during database modeling, to maintaining the integrity at the imple-

mentation level. This work aims to specify some multi-scale integrity constraints and

allow their checking at runtime.

ICs are often translated to database triggers [46, 12, 24], such as in active databases[31]

or to metadata stored in a repository [11, 40, 48, 29, 10]. Repositories can be a set of

tables, XML files, ontologies, etc. In this work, we chose to implement them directly via

methods of classes in Java – see Chapter 4.

2.4.3 Geospatial and temporal integrity constraints

Geospatial constraints are often associated with spatial relationships. According to Guting

[25], spatial relationships can be of three kinds – topological, directional and metric.

Temporal constraints are related to relationships among time intervals, or an instant and

an interval (e.g., an instant is inside an interval, two intervals are disjoint, or one interval

comes before/after another interval). Thematic constraints refer to the consistency of

thematic attributes (e.g., “buildings should be residential, commercial or industrial”).

Finally, there are spatio-temporal constraints, that combine predicates on spatial and

temporal attributes [43, 28].

While most papers deal with Spatial/Temporal constraints within a scale, some recent

papers have dealt with integrity across (inter) scales. One example is Stoter et al. [46],

which proposed a new model to represent multi-scale topography. The authors have

discussed ICs across scales, but the focus was on the semantics and they did not consider

the temporal scale.

2.4. Integrity Constraints (ICs) 10

Camossi et al. [6] have studied ICs to preserve object states across temporal scales

regarding evolution in time, using E-C-A rules for aggregation and update of data. They

do not consider keeping track of data changes (which our model allows), neither do they

support alternative representations, as we do.

There are many other kinds of constraints for spatial data in the literature, e.g.,

the shape constraints of Mäs and Reinhardt [28]. Last but not least, several authors

(e.g. Cockroft [10, 9]) propose user constraints, in which users define constraints that are

specific to their domain. These constraints are beyond the scope of this work, and are

left for future research.

2.4.4 Conclusion

This Chapter presented an overview of basic concepts that will be used in the rest of the

text. In particular, it presented two basis for this work – the DBV model, and integrity

constraints for multi-scale geospatial data.

Chapter 3

The multi-scale model and

inter-scale constraints

3.1 DBV multi-scale model

3.1.1 Overview

We have adopted the DBV model to support multiple scales. Each DBV represents the

world in a particular scale. The set of DBVs, which can be interlinked, correspond to a

multi-scale/multi-representation world.

We extended the model so that, instead of one derivation tree, each scale has its

own tree and all trees evolve together. Besides the version stamp, each DBV has now

an associated scale s. We use the following notation: dXs denots DBV dX of scale s.

Figure 3.1 shows the derivation trees for four versions (0, 0.1, 0.1.1 and 0.1.2) and n

scales. Notice that all trees have the same topology, thereby indicating that in the real

world, when an object is versioned, this happens at all scales.

Let a real world object o1 be physically stored in a database in two scales, receiving

physical identifiers pv1 and pv2, where the geometry of pv1 is a polygon and pv2 a

point. Polygon and point are respectively represented in DBVs d11 and d12. Using

this information and the DBV concepts, we have two logical versions (each in a DBV)

represented in the following way: logical version 1 = ((o1, d11), pv1) and logical version

2 = ((o1, d12), pv2). In other words, DBV d11 contains the polygon version of o1, and

d12 the point version of o1.

Unlike several multi-representation approaches, we do not link explicitly objects of

different scales (e.g., pv1 and pv2). Instead, the link is achieved implicitly by combining

stamp and derivation trees, using the concept of logical versions. This kind of link is

similar to the bottom-up variant seen in section 2.1.2.

11

3.1. DBV multi-scale model 12

Figure 3.1: Example of our approach to maintain versions of multi-scale geospatial data

A change in the real world that requires creating a new version in scale s may require

changes in other scales. Keeping one tree per scale, thus, makes sense because, as remarked

by [45], for large scale changes an object suffers radical changes when scale changes occur

and thus there is seldom any intersection (if any) between DBVs in different scales. To

simplify maintaining consistency across scales, we postulate that all derivation trees grow

and shrink together and have the same topology. This leads to the notion of multi-scale

scenario σ, for short, scenario. A scenario is formed by all the DBVs with the same

version stamp. For instance, in Figure 3.1, d01, d02, . . . , d0n form a scenario, and so do

d11, d12, . . . , d1n; etc. In fact, there may be many scenarios.

For managing the versions, we use the propagation algorithm adopted by the DBV

model: only data changes must be stored and unchanged data are propagated across

versions.

3.1.2 The Model

Figure 3.2 represents our model in UML. We introduce a new class called Scale, which has

an identifier named sid (scale id). A DBV is identified by the couple (stamp, sid). The

Scale class allows the association of a DBV with different types of scales, where spatial

scale is one of them (another example is the temporal scale). A MultiversionObject may

encapsulate others through aggregations (more details will be seen in section 3.1.4). The

LogicalVersion class associates a MultiversionObject to a DBV. A physical version of an

object underlies a logical version (i.e., it may appear in some DBV). This is expressed

by the relationship between LogicalVersion and PhysicalVersion classes. The latter is the

root of a hierarchy of classes of all kinds of objects that can be versioned and allows the

3.1. DBV multi-scale model 13

user to choose which data will be versioned because PhysicalVersion needs to be extended.

A DBV has one parent and – by a derivation process – one or more children.

Moreover, if a multiversion object o does not appear in DBV d, we represent this

situation by setting its value (as a logical version) as null. Thus, initially all objects are

stored as null in the root DBVs (for convenience, we omitted this fact in the examples).

Figure 3.2: Our basic model in UML

The model considers the following operations:

1. Create/update/remove a multiversion object . These operations persist, up-

date and remove a multiversion object, respectively;

2. Create a new scale s . This operation persists in the database a Scale entity and

a root DBV for scale s. If other derivation trees already exist, the new tree has to

reflect the topology of the other trees by repeatedly invoking operations that create

DBVs whose logical states correspond to sets of objects in scale s ;

3. Create a DBV d from its parent p. This operation persists in the database a

DBV entity d derived from p. Its initial state is the same as parent p;

4. Add, delete or modify a logical version of an object from a DBV. Logical

versions are stored as tuples <dbvid, oid, pvid>. If an object does not exist in

a given DBV, it receives value null instead of pvid. This operation manipulates

LogicalVersion entities, adding new or modifying existing ones. Deletion of a logical

version eliminates the tuple from the table. Users updating a logical version are in

fact updating a DBV. At each update, users can decide whether this will require

versioning. In this case, this is reflected into creating a new scenario (operation 7);

5. Remove a DBV d . First, this operation removes the logical versions related to

d. Next, d is deleted from the database. This operation can only be accomplished

if there are no DBVs derived from d ;

3.1. DBV multi-scale model 14

6. Access a DBV. The DBV is made available to the user by collecting all logical

versions of its objects. I.e., the corresponding view of the multiversion database is

made available;

7. Create a scenario by deriving a DBV da from db. This operation creates

a new DBV in all derivation trees, by inserting at each scale s DBV das as child

of DBV dbs repeatedly invoking the create DBV operation. At the end, the set of

created DBVs is considered as the current scenario;

8. Remove a scenario sc. This operation removes the DBVs (and all their logical

data) which form sc. This is only possible if all DBVs of sc are leaves regarding

their derivation trees;

3.1.3 A simple example

Consider Figure 3.3, where the roots (stamp 0) appear for scales 1:10000, 1:20000 and

1:50000. This example concerns urban vectorial data, and the Figure illustrates a given

city section. The first version from root (stamp 0.1) shows the initial state of the section

represented in the three scales. Version 0.1.1 and 0.1.2 show evolution alternatives in that

section (either prioritizing the horizontal road, or the vertical road). The geometries in

dotted lines represent the propagated data.

Figure 3.3: Multi-scale versioning problem example

Internal details appear in Figure 3.4. Part (a) shows the multiversion objects. Part

(b) shows the physical versions and their geometry. Finally, the logical versions and their

3.1. DBV multi-scale model 15

relationship with physical versions are shown in part (c). For instance, in scale 1:10000,

the city section is stored as a complex geometry (a polygon with six sub-polygons), with

oid o1 and with three physical representations – one per scale – pv1, pv2 and pv3. Each

of these geometries will be accessible via a different DBV, respectively d11, d12 and d13.

Figure 3.4: (a) Multiversion objects. (b) Physical versions and their geometry. (c) Logical
versions from the example

Suppose the user wants to work at scale 1:10000, in the horizontal road situation, i.e.,

DBV d21. The DBV view is constructed from all objects explicitly assigned to it (pv4

of o2), and all objects in previous DBVs of that scale, up to the root, i.e., d11 – pv1 of

o1. This construction of consistent scenarios for a given scale in time is achieved via the

stamps, by the DBV mechanism. Notice that each version is stored only once. Unless

objects change, their state is propagated through DBVs, saving space. Also, users can

navigate across a path in the derivation tree, following the evolution of objects in time.

For more details on space savings, see [8].

3.1.4 Aggregation

In multi-scale environments it is common for two or more objects to be aggregated in

some scales. For this, a new object – an aggregator – must be created. An aggregator

encapsulates n “children” objects in any scale, following the composition/aggregation

principle of object-oriented databases.

Objects are aggregated in a scale s if they are not directly accessible in s, and they

3.2. Multi-scale integrity constraints 16

are encapsulated within the same aggregator, which in turn is made available in s. We

may also conclude that if an object is present in a scale, then it is not aggregated to any

other in that scale.

As a simple example, consider three multiversion objects: o1, o2 and o3, in which

o3 is an aggregator and represents the aggregation of o1 and o2. Figure 3.5 illustrates

this example and Figure 3.6 shows the tables related to multiversion objects (part (a)),

aggregation (part (b)) and logical versions (part (c). We may note that in DBV d11, o1

is represented by pv1, o2 by pv2 and o3 does not appear. In turn, in DBV d12 just o3

appears.

Figure 3.5: Example of aggregation using the DBV multi-scale model

Figure 3.6: (a) Multiversion objects. (b) Aggregations. (c) Logical versions

3.2 Multi-scale integrity constraints

This section presents our set of primitive extensible integrity constraints (ICs) that define

basic consistency conditions across scales. We point out that we are not interested in

operations of generalization (e.g., McMaster and Shea’s work [30]), but in multi-scale

consistency upon updates.

3.2. Multi-scale integrity constraints 17

We define a multi-scale integrity constraint (MS-IC) to be an IC that holds between

consecutive scales si and sj, where sj represents the immediately smaller or larger scale

related to si stored in the multiversion database. Constraints are to be applied within a

scenario. Multi-scale consistency should be checked every time a new scenario is created

and/or DBVs are updated (i.e., some multiversion object is inserted, deleted or modified).

A scenario σ is consistent if its DBVs are consistent regarding MS-ICs.

Figure 3.7 shows 3 derivation trees, for scales s1, s2 and s3, and exemplifies a scenario

that contains all DBVs whose stamps are marked 0.1.2. MS-ICs are defined to hold

between scales s1 and s2, and s2 and s3.

Figure 3.7: MS-ICs hold across consecutive scales

Definition. An MS-IC defines conditions under which two states of the world, repre-

sented in distinct spatial and/or temporal scales, are jointly consistent.

Let us consider a set of scales (spatial or temporal) s1 > s2 > . . .> sn (s1 is more

detailed than s2, s2 is more detailed than s3, and so on) and generic multiversion database

objects, with schema <geom, {thematic attr}, ti, tf>, where geom represents the geom-

etry of the object specified by a set of coordinates, {thematic attr} is its set of thematic

attributes, ti and tf represent the initial and final validity timestamp, respectively, for

that geometry and attributes.

There follow some operators defined by us to help define the MS-ICs:

• simple geom(multiversion objecto, spatial scales) – returns true if the geometry com-

ponent of the multiversion object o in s is point, line or polygon;

• aggregator(multiversion objecto) – returns true if the multiversion object o is an

3.2. Multi-scale integrity constraints 18

aggregator – an object created to encapsulate n “children” objects – e.g., a “city

beach” object encapsulates one or more “house” objects;

• num points(multiversion objecto, spatial scales) – returns the number of points that

compose the geometry of o in s ;

• num geometries(multiversion objecto, spatial scales) – returns the number of geome-

tries that compose the geometry of o in s ;

• children(multiversion objecto) – returns a set of multiversion objects that are en-

capsulated by o (i.e., it extracts the encapsulated objects, at the first encapsulation

level);

• aggregated(multiversion objecto1, multiversion objecto2, scales) – returns true if mul-

tiversion objects o1 and o2 are aggregated in scale s (spatial or temporal) – e.g., if

“house 1” and “house 2” in a scale s1 are encapsulated by “block 1” in s2 > s1 ;

• topR applicable(topological relationshipt, multiversion objecto1, multiversion objecto2,

spatial scales) – returns true if the topological relationship t applies to the geome-

tries of multiversion objects o1 and o2 in scale s. More details in subsection 3.2.1;

• duration(multiversion objecto, temporal scales) – computes |ti – tf | of o in s ;

• interval(multiversion objecto, temporal scales) – returns true if duration(o, s) > 0,

i.e., it is an interval. Otherwise, it is an instant of time.

In the following subsections, we provide some examples for each type of MS-IC. Spatial

and temporal scale variations are best separately represented as remarked by Camossi et

al. [7]. Thus, we divide MS-ICs for spatial scale variation (Spatial MS-IC), temporal scale

variation (Temporal MS-IC) and for one or the other (Shared MS-IC).

3.2.1 Spatial MS-ICs

Geometric IC

This category deals with the geometry of objects. Geometric integrity constraints are

related to the monotonicity assumption – when there is a scale reduction, the geometry

of objects must remain the same or be simplified [13, 20]. Thus, from the categorization

of dimensions for 2D environment proposed by OGC [32] shown in Figure 3.8, we define

the following MS-ICs for the DBV multi-scale model:

1. ∀o ∈ si,sj / si > sj ⇒ dimension(o, si) ≥ dimension(o, sj)

3.2. Multi-scale integrity constraints 19

Figure 3.8: Geometry dimensions

2. ∀o ∈ si,sj / si > sj ⇒ num points(o, si) ≥ num points(o, sj)

3. ∀o ∈ si,sj / si > sj ⇒ num geometries(o, si) ≥ num geometries(o, sj)

4. ∀o ∈ si,sj / si < sj ∧ geometry collection(o, si) ⇒ geometry collection(o, sj)

Defining only constraints on geometric dimensions (MS-IC 1) is not enough, because

as shown in Figure 3.8, point and multi-point have the same dimension, and there is no

consistency if in a larger scale an object is represented by a point and in a smaller scale

the same object is represented by a multi-point geometry. The same applies to line and

multi-line, polygon and multi-polygon, multi-polygon and collection, etc. MS-ICs 2 and

3 solve this issue, ensuring that the number of points and geometries will not increase

when scale changes.

MS-IC 4 guarantees that if in a smaller scale an object is represented by a geometry

collection, then in the immediate larger scale it should also be represented by a geometry

collection.

Topological IC

This category is related to the topological relationships adopted by OGC [32]: equals,

disjoint, touches, crosses, within, overlaps, contains and intersects. We do not consider

contains and intersects relationships, because they are the inverse of within and disjoint,

respectively.

Following OGC[32], let us consider three geometry groups: P, L and A (points, lines

and areas), where P refers to 0-dimensional geometries, L to 1-dimensional geometries

and A to 2-dimensional geometries. Figure 3.9 extracted from [32] shows what groups

of relationships can be applied for each topological relationship. For instance, take the

3.2. Multi-scale integrity constraints 20

topological relationship overlaps as an example. We can see in the Figure that the appli-

cable groups of relationships are A/A, L/L and P/P – i.e., areas can overlap each other,

and so can lines and points, but lines cannot overlap points.

Figure 3.9: Topological relationships and applicable groups of relationships [32]

We state that topological relationships should be maintained from si to sj if si < sj.

However, we do not define constraints for cases in which si is much smaller than sj, because

then anything can happen. The notion of “much smaller” is user and context-dependent,

and must therefore be defined by the users. The implemented system supports this notion.

For instance, in a precision farming situation a factor of 100 may be considered “much

smaller”, whereas in the context of global warming this may not be the case. Topological

ICs deal with simple geometries, i.e., point, line and polygon, because for the other types

(e.g. multi-polygon) it is dificult to define MS-ICs due to the variety of geometries which

they may represent.

Given simple geometries G1 and G2, and R a topological relationship between them,

then G1 R G2 in si ⇒ G1 R G2 in sj:

1. ∀(o1,o2) ∈ si,sj, ∀R ∈ {equals, disjoint, touches, crosses, within, overlaps} / si < sj ∧
simple geom(o1, si) ∧ simple geom(o2, si) ∧ simple geom(o1, sj) ∧ simple geom(o2,

sj) ∧ topR applicable(o1, o2, si) ∧ topR applicable(o1, o2, sj) ∧ R(o1, o2, si) ⇒
R(o1, o2, sj)

Directional IC

This category deals with the directional relations shown in Figure 3.10. The numbers in

the Figure represent the direction relations regarding Qc – the reference point symbol

[37]. For instance, when object o is in partition 1, then o is north west of Qc.

We define that the direction between two disjoint objects in si and in sj should be

maintained across scales. For instance, if in si o1 is east of o2, then in sj the same should

3.2. Multi-scale integrity constraints 21

occur. We also point out that more complex directional constraints are fuzzy, but may

be defined by a combination of these constraints.

Figure 3.10: Directional relations considering one point per object [37]

1. ∀(o1,o2) ∈ si,sj / si > sj ∧ simple geom(o1, si) ∧ simple geom(o1, sj) ∧ sim-

ple geom(o2, si) ∧ simple geom(o2, sj) ∧ disjoint(o1, o2, si) ∧ disjoint(o1, o2, sj)

⇒ direction(o1, o2, si) = direction(o1, o2, sj)

3.2.2 Temporal MS-ICs

Interval IC

This category deals with changes of time intervals across scales. Basically, larger scales

should have longer or equal intervals than smaller scales. For instance, if some object is

valid for a week in a week-based scale, it cannot be valid for a larger period in a year-based

scale.

1. ∀o ∈ si,sj / si > sj ⇒ duration(o, si) ≥ duration(o, sj)

Temporal Relationship IC

This category deals with temporal relations like: before, meets, overlaps, etc, as shown in

Figure 3.11, which is based on Allen’s theory [1].

Given time intervals T1 and T2, and R a temporal relationship between them, then

T1 R T2 in si ⇒ T1 R T2 in sj:

1. ∀(o1,o2) ∈ si,sj, ∀R ∈ {before, equals, meets, overlaps, during, starts, finishes} / si
< sj ∧ interval(o1, si) ∧ interval(o2, si) ∧ interval(o1, si) ∧ interval(o2, sj) ∧ R(o1,

o2, si) ⇒ R(o1, o2, sj)

3.2. Multi-scale integrity constraints 22

Figure 3.11: Temporal relationships for intervals defined by Allen [1]. Adapted by [15]

3.2.3 Shared MS-ICs

Aggregation IC

MS-ICs related to aggregated objects fit in this category.

1. ∀(o1,o2) / si > sj ∧ aggregated(o1, o2, si) ⇒ aggregated(o1, o2, sj)

2. ∀aggregator(o) ∈ si ∧ /∈ sj / si < sj ⇒ children(o) ∈ sj

Existence IC

Consistency related to the existence or not of objects in si and sj is set in this category.

1. ∀o ∈ si / si < sj ∧ ¬aggregator(o) ⇒ o ∈ sj

This MS-IC ensures that if an object exists in a smaller scale and it is not an aggregator,

then it will also exist in the immediately larger scale.

Thematic IC

This category deals with thematic attributes of objects.

1. ∀o ∈ si,sj ⇒ thematic(o, si) = thematic(o, sj)

This constraint ensures that for every object o that appears in si and sj, the values of

its thematic attributes should be the same in si and sj.

3.3. Conclusion 23

3.3 Conclusion

The first part of this Chapter presented the DBV multi-scale model, which is an extension

of the DBV model that supports the management of multi-scale geospatial data. The

second part defined some multi-scale integrity constraints to be applied to the DBV

multi-scale model.

Chapter 4

Implementation details

4.1 DBV multi-scale platform

We developed our platform1 on top of the PostGIS2 spatial database extension for Post-

greSQL3 due to its widespread adoption and to its support of geospatial features. Our

implementation uses the Java programming language, Java Persistence API (JPA)4 and

Generic Spatial DAO library5, which is a generic DAO (Data Access Object)6 with spatial

extensions (using Hibernate Spatial7) and utility methods, for geographic data object/re-

lational mapping.

Figure 4.1 shows the UML model of the platform, divided in five packages: Domain

Data Mapping, Database Handlers, Consistency Handlers, Multi-Scale Integrity Con-

straints and Controller. The Domain Data Mapping package implements the database for

the model of Figure 3.2, mapping Java objects into the underlying DBMS. The Database

Handlers package uses the Domain Data Mapping classes to access the physical storage.

The Database Handlers classes are inspired in the DAO pattern, to which we added spe-

cific methods of our model (e.g., to handle with logical versions). Consistency Handlers

use the MS-ICs in the Multi-Scale Integrity Constraints package to check multi-scale con-

sistency. Finally, the Controller package is accessed by applications to select the scenario

to use and to perform operations on DBVs and objects.

The Controller plays the role of mediator among the platform’s modules. For database

operations, it receives query/update requests and invokes the appropriate methods of

1http://code.google.com/p/dbv-ms-platform
2http://postgis.refractions.net
3http://www.postgresql.org
4http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
5http://code.google.com/p/generic-spatial-dao
6http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
7http://www.hibernatespatial.org

24

4.1. DBV multi-scale platform 25

Figure 4.1: Architecture of the platform

package Database Handlers – e.g., create DBVs, scales, objects (physical and logical

versions). Whenever a new scenario is created, or whenever the application requests a

consistency check, it is the Controller that gets the necessary data from the database –

by using the Database Handlers ; it next invokes methods of the Consistency Handlers,

which will in turn invoke different MS-IC methods. We recall that, moreover, the creation

of a new scenario requires previously checking the consistency of the current scenario.

The basic default schema of the DBV multi-scale platform (limited to GenericPV

subclass) is shown in Figure 4.2.

The MultiversionObject class has five attributes. The first is the identifier, the second

is some title which identifies the object in the real world, the third is some complement

of the title attribute, the fourth says if the object is an aggregator (more details in

section 3.1.4), and the fifth is the set of encapsulated objects if this is an aggregator.

The Scale class has an identifier, an attribute that indicates the type of the scale (spa-

tial, temporal, etc) and another that is the value associated to the type (e.g., “1:10000”

for spatial scales, “minutes” for temporal scales).

The DBV class has five attributes. The first is the identifier, the second is the version

stamp, the third is the associated scale, the fourth stores the stamp of the next child to

be created by derivation (e.g., if a DBV with stamp 0.1 has already two children – 0.1.1

and 0.1.2 – the next child attribute will indicate 0.1.3), and the fifth is the DBV from

which it was derived. The PhysicalVersion abstract class has an identifier, a geometry,

and an initial and final timestamp: ti and tf , respectively. The GenericPV subclass has

no aditional data besides PhysicalVersion attributes (users can create other subclasses

of PhysicalVersion entering new attributes to be versioned). Finally, the LogicalVersion

4.2. Platform functionality 26

Figure 4.2: Entities of the platform described in UML

class links a DBV and a multiversion object with a physical version.

4.2 Platform functionality

This section describes details of some of the operations of the model: create a new scenario,

accessing a DBV, adding or modifying a logical version of an object in a DBV, checking

multi-scale consistency of the current scenario. Other operations are straightforward and

are not described here. All operations involve read operations, which are not explicitly

described here.

4.2.1 Creating a new scenario

A new scenario is created as follows. First, a current scenario sc must to be chosen. Then,

for each DBV d in sc, the Controller interacts with the DBVHandler so that it creates a

child for d. DBV creation can only happen if the scenario is consistent (see section 4.2.4).

4.2.2 Accessing a DBV

The access to DBV X of scale s is as follows. Suppose X = 0.1.1. The Controller delegates

the task of accessing a DBV to the LogicalVersionHandler, which executes a query similar

4.2. Platform functionality 27

to:

SELECT ∗
FROM l o g i c a l v e r s i o n , dbv , m u l t i v e r s i o n o b j e c t

WHERE l o g i c a l v e r s i o n . dbvid = dbv . dbvid AND

l o g i c a l v e r s i o n . o id = m u l t i v e r s i o n o b j e c t . o id AND

dbv . s i d = 1 AND

(dbv . stamp = ’ 0 . 1 . 1 ’ OR dbv . stamp = ’ 0 .1 ’ OR dbv . stamp = ’ 0 ’)

ORDERBY dbv . stamp DESC

Basically, this is a join between logical version, multiversion object and dbv tables,

looking for shared logical versions. Note that we reverse sort the result by the DBV stamp.

This will cause the query to return first the multiversion objects of the nearest parent

DBVs. In the implementation, we limit the maximum number of alternative scenarios to

nine, but this can be extended arbitrarily, allowing the database to reverse sort correctly

the stamps. For instance, in the present implementation, databases without modifications

can reverse sort correctly (according to the DBV model) the stamps 0.9.1 and 0.8.1, but

not 0.10.1 and 0.9.1.

Once the query is executed, we have a partial result: a list of logical versions in

which multiversion objects may appear repeated. Next, we traverse this list putting the

multiversion objects and their physical versions in a Java map, choosing always the first

logical versions from those with repeated objects.

Figure 4.3 shows the UML sequence diagram of the entire operation.

Figure 4.3: Accessing a DBV

4.2. Platform functionality 28

Algorithm 1 Adding or modifying a logical version of an object

Require: a logical version object lv (representing a tuple < dbvid, oid, pvid >)

1: procedure addOrModify(lv)
2: let lv db and s lv db be logical version objects;
3: lv db← search for a logical version object with the same primary key of lv;
4: if lv db <> null then . logical version already exists
5: lv db.pvid← lv.pvid
6: modify tuple represented by lv db
7: return
8: end if
9: s lv db← search for a shared logical version of lv;

10: if s lv db == null then . shared logical version not found
11: add the tuple represented by lv
12: else if s lv db.pvid <> lv.pvid then
13: s lv db.pvid← lv.pvid
14: modify tuple represented by s lv db
15: end if
16: end procedure

4.2.3 Adding or modifying a logical version of an object in a

DBV

Users always start from a given scenario, which is the starting point of any operation.

Once the scenario is chosen, the Controller can receive a multiversion object, its OBJ-

TYPE value and the target scale. Next, the Controller asks the PhysicalVersionHandler

to store the OBJTYPE value as a physical version in the database.

Next, the Controller chooses the appropriate DBV in the current scenario, encapsu-

lates this DBV in a LogicalVersion object lv along with the multiversion object and the

physical version created. Finally, the lv object is passed to the LogicalVersionHandler,

which executes the algorithm 1.

A shared logical version of an object o is the first logical version of o present in parent

DBVs, following the data propagation of the DBV model.

Figure 4.4 shows the UML sequence diagram of the entire operation.

4.2.4 Checking multi-scale consistency of the current scenario

Consistency is only checked within a scenario, going through all scales, and checking

all MS-ICs for every pair of scales si, si+1. Let us consider multi-scale consistency re-

garding spatial scales. Spatial MS-ICs are checked via two main methods present in

4.2. Platform functionality 29

Figure 4.4: Adding or updating a logical version of an object

the classes that implement the interface SpatialMSIC (e.g., GeometricIC class): check-

Consistency() and checkPairConsistency(). The checkConsistency() method checks the

multi-scale consistency between two versions of an object, i.e., one version per scale. In

turn, the checkPairConsistency() method checks the multi-scale consistency between two

pairs of objects (one pair per scale). Algorithm 2 shows the checking of spatial multi-scale

consistency.

This approach is not the best considering performance and memory and we leave for

future work improvements on these issues.

Figure 4.5 shows the UML sequence diagram of this operation. Part of the execution

of the algorithm 2 is executed by the MultiScaleICHandler.

Figure 4.5: Checking multi-scale consistency of the current scenario

4.3. DBV multi-scale web manager 30

Algorithm 2 Checking spatial multi-scale consistency of the current scenario

Require: a scenario sc and a set of Spatial MS-ICs spatial msics

1: procedure checkSpatialMultiScaleConsistency(sc, spatial msics)
2: let s be the array of scales in sc;
3: let lvs si and lvs sj be lists of logical versions at s[i] and s[j], where j = i+ 1;
4: let geom o1 si, geom o1 sj, geom o2 si and geom o2 sj be geometries;
5: for i← 1 to s.length do
6: j ← i+ 1;
7: lvs si← get logical versions (sorted by the title of the objects) in s[i];
8: lvs sj ← get logical versions (sorted by the title of the objects) in s[j];
9: for k ← 1 to lvs si.length do

10: geom o1 si← get the geometry contained in lvs si[k];
11: geom o1 sj ← get the geometry contained in lvs sj[k];
12: for all constraints in spatial msics do
13: check the consistency of the pair < geom o1 si, geom o1 sj >;
14: end for
15: for w ← k + 1 to lvs si.length do
16: geom o2 si← get the geometry contained in lvs si[w];
17: geom o2 sj ← get the geometry contained in lvs sj[w];
18: for all constraints in spatial msics do
19: check the consistency between the two pairs
20: < geom o1 si, geom o2 si > and < geom o1 sj, geom o2 sj >;
21: end for
22: end for
23: end for
24: end for
25: end procedure

4.3 DBV multi-scale web manager

In order to visualize the stored multi-scale data and check their consistency in a straight-

forward way, we developed a web application called “DBV multi-scale web manager”. It

was built using the Java programming language, JSF8 (Java Server Faces) framework,

RichFaces9 visual components for JSF, OL4JSF10 library, which helps the use of Open-

Layers11 for JSF. This application can be seen as a high level layer between the user and

the DBV multi-scale platform, as shown in Figure 4.6. Any user request through this

8http://javaserverfaces.java.net
9http://www.jboss.org/richfaces

10http://java.net/projects/ol4jsf
11http://openlayers.org

4.4. Conclusion 31

manager invokes commands of the DBV multi-scale platform.

Figure 4.6: DBV multi-scale web manager

Figure 4.7 shows a screen copy of the interface of the DBV multi-scale web manager.

This Figure concerns the simple example of section 3.1.3. The menu (left side) containing

the scenarios is built dynamically by looking at the DBVs available in the underlying

database. Also, there are three tabs above the map. The first allows to see the map,

the second shows the multi-scale data in a table and the third allows to check multi-

scale consistency. The map window has some basic controls like zoom, navigation, etc,

provided by the OpenLayers library. The combo box at the top allows users to alternate

across persistence units. Each persistence unit configures access to a different multiversion

database. The Figure shows that the current persistence unit is dbv-ms-platform-example.

4.4 Conclusion

This Chapter presented some implementation details of the DBV multi-scale platform.

The next Chapter presents a case study using real data.

4.4. Conclusion 32

Figure 4.7: Screen copy of the interface of the DBV multi-scale web manager

Chapter 5

Case study

5.1 User interactions

This chapter gives an example of a user session. This case study used multi-scale geospatial

real world data provided by Embrapa1. The data sets contain 5641 geometry features

related to the Rio Pardo watershed and its rivers, at two scales: 1:250k and 1:1M.

Let us consider the user wants to construct some scenarios using the DBV multi-scale

platform. These scenarios are described in Figure 5.1.

Figure 5.1: Proposed scenarios

The user starts by choosing to create empty DBVs, one for each scale. Figure 5.2

shows screen copies of this first step, one per scale. The left side of each screen shows how

new versions are progressively created, while the maps portray the actual visualization of

multi-scale data at each DBV.

Next, consider that the user wants to show more data details reflecting evolution in

the user’s knowledge of the world. This is achieved by demanding the creation of two new

1http://www.embrapa.br

33

5.2. Underlying implementation issues 34

Figure 5.2: Scenario 0

DBVs (one for each scale) descending from scenario 0. Figure 5.3 shows the scenarios for

DBVs with stamp 0.1.

Next, suppose the user wants to add data in order to represent two alternative sce-

narios: one contains the watershed and all its rivers and another with the watershed and

only its main river. For each scale, two new DBVs are created descending from scenario

0.1. Figures 5.4 and 5.5 are screen copies of these two alternative scenarios, respectively

numbered 0.1.1 and 0.1.2.

At each DBV and scale, the user can visualize more or less details by clicking on the

+/- buttons. Figures 5.6 shows an example of zooming into the screen of scenario 0.1.1,

for scale 1:250000.

5.2 Underlying implementation issues

Figure 5.7 shows the derivation trees of the case study. Scenario 0 has no data (by default),

scenario 0.1 has only the watershed polygons in the two scales. Scenario 0.1.1 has the

watershed with all rivers in the two scales. Here, we do not have to store the watershed

polygons again, because they are shared from the previous scenario. The same occurs in

scenario 0.1.2, where besides the watershed polygons, the main river appears.

The DBV multi-scale platform was used to store these versions in the database. First

5.2. Underlying implementation issues 35

Figure 5.3: Scenario 0.1

Figure 5.4: Scenario 0.1.1

5.2. Underlying implementation issues 36

Figure 5.5: Scenario 0.1.2

Figure 5.6: Scenario 0.1.1 with more details

5.3. Experiments 37

Figure 5.7: Derivation trees of the case study

of all, we chose to use the default schema, i.e., the GenericPV subclass of PhysicalVersion.

Next, we defined that two scales have to be created: scales 1:250k and 1:1M. Every time

a scale is added, a new derivation tree is created – by updating a root DBV.

Scenario 0.1 was constructed by creation of a DBV per scale, followed by insertion of

objects corresponding to watershed and rivers. This was achieved by invoking operations

on multiversion objects and DBVs, via invocation of methods of the platform, e.g., adding

or updating logical versions of objects, by working in a scale at a time. When a new DBV

is created from the current, the changes are saved. Subsequent versions were built by

changing the logical versions and creating new DBVs.

5.3 Experiments

We now discuss a few experiments performed in order to check some of the MS-ICs defined

in Section 3.2.

5.3. Experiments 38

5.3.1 Experiment 1

The database is supposed to be initially consistent (i.e., all scenarios are consistent with

respect to the original data). The first experiment went through all scenarios, top-down in

the trees, checking the consistency of all scenarios (i.e., all DBVs, all scales). This is done

by clicking on the right button of Figure 5.8. The Figure shows the message presented

to the user as a result of the consistency analysis, indicating that the entire database is

consistent (for all scales analyzed).

Figure 5.8: All scenarios are consistent in experiment 1

We point out that the times displayed indicate a better performance in scenarios 0.1.1

and 0.1.2 (both with many data) than scenario 0.1 (with few data). This is because

the previous check data was already in the memory cache. This does not reflect the

performance considerations regarding the DBV model, that concerns space savings, but

not time.

5.3.2 Experiment 2

Consider that a user is updating the geometry of the main river in scenario 0.1.2. Suppose

(s)he has inserted a simplified geometry in the largest scale and a detailed geometry in

the smallest scale. Then, when the user requests a consistency check of the scenario, the

system will indicate violation of constraints. Figure 5.9 shows a screen copy containing

the messages to this effect.

Notice that several error messages appear, considering object dimensions, number of

geometries and number of points of an object.

5.4. Conclusion 39

Figure 5.9: Consistency error messages of experiment 2

5.3.3 Experiment 3

Let us consider scenario 0.1.1. Suppose a given user inserted river Rio Anhandúı object

in the smallest scale, but no corresponding object was inserted in the largest scale. Then,

when (s)he checks the consistency of the scenario, the system will show one constraint

error message – see Figure 5.10.

These kinds of check verify that scales are mutually consistent with respect to objects

stored.

5.4 Conclusion

This Chapter presented an example of a user session, and outlined how this is implemented

internally. The next Chapter presents conclusions and future directions.

5.4. Conclusion 40

Figure 5.10: Consistency error message of experiment 3

Chapter 6

Conclusions and extensions

6.1 Conclusions

We have presented an approach named DBV multi-scale model to manage multi-scale

geospatial data, and keep track of their evolution. Our model supports the traceability

of the evolution of spatial objects, while at the same time handling multi-scale data

management. Thanks to the adoption of the DBV model as a basis, storage space is

saved [8]. The separation between physical and logical versions facilitates the creation of

consistent, single scale views over multi-scale data. We point out that our approach is

centered on data structures to store and manage multi-scale data. This allows controlling

updates, keeping history of evolution in the real world and other issues that can be

efficiently handled only in a storage based policy. Nevertheless, the proposal can be used

as a basis for any kind of generalization approach – e.g., construction of intermediate

scales, generalization of alternative virtual scenarios, and so on, to work, for instance in

digital cartography. Moreover, part of this work was also published in [27].

Regarding consistency, some multi-scale integrity constraints (MS-ICs) were proposed.

We have defined MS-ICs for spatial and temporal scales, as well as generic multi-scale

constraints.

The DBV multi-scale model was implemented in a prototype of a platform, developed

in order to validate our solution. The prototype integrates the model with support to

multi-scale integrity constraints. Finally, we tested this platform with multi-scale real

data, thereby validating the proposal.

Recapping, considering the questions posed in the introduction, the contributions

answer those questions as follows:

• Management of multi-scale data

– How to manage multi-scale data?

41

6.2. Extensions 42

DBV multi-scale model and platform

– How to trace real world evolution?

Multiple derivation trees

• Multi-scale consistency

– How to guarantee multi-scale consistency?

MS-ICs in the DBV multi-scale platform

6.2 Extensions

There are many extensions possible for this work. They include:

• add multi-scale constraints that combine the variation of the spatial scale along with

the temporal scale, i.e., spatio-temporal constraints;

• add intra-scale constraints;

• support automatic update propagation across scales;

• add full support to multi-representation, in which each representation would corre-

spond to a different derivation tree and there would be multi-representation con-

straints;

• improve consistency checking algorithms;

• add semantics to multiversion objects.

Also, the DBV multi-scale web manager could be extended to allow full interaction

with the DBV multi-scale platform. At present, it is only possible to visualize stored multi-

scale data and check consistency. Our implementation considered consistency checking via

software (as opposed to active databases), which extensibility and does not require active

mechanisms. A possible additional extension would be to consider this implementation

alternative.

Bibliography

[1] J. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,

26(11):832–843, 1983.

[2] E. Bertino, E. Camossi, and M. Bertolotto. Multi-granular spatio-temporal object

models: Concepts and research directions. In Object Databases, volume 5936, pages

132–148. Springer Berlin / Heidelberg, 2010.

[3] M. Bobzien, D. Burghardt, I. Petzold, M. Neun, and R. Weibel. Multi-representation

databases with explicitly modeled horizontal, vertical, and update relations. Cartog-

raphy and Geographic Information Science, 35(1):3–16, 2008.

[4] D. Burghardt, I. Petzold, and M. Bobzien. Relation modelling within multiple

representation databases and generalisation services. Cartographic Journal, The,

47(3):238–249, 2010.

[5] Y. Bédard, E. Bernier, and T. Badard. Multiple representation spatial databases

and the concept of vuel. Encyclopaedia in Geoinformatics, Hershey: Idea Group

Publishing, 2007.

[6] E. Camossi, E. Bertino, G. Guerrini, and M. Bertolotto. Adaptive management of

multigranular spatio-temporal object attributes. In Advances in Spatial and Tempo-

ral Databases, volume 5644 of Lecture Notes in Computer Science, pages 320–337.

Springer Berlin / Heidelberg, 2009.

[7] E. Camossi, M. Bertolotto, and E. Bertino. Multigranular spatio-temporal models:

implementation challenges. In Proc. of the 16th ACM SIGSPATIAL, GIS ’08, pages

63:1–63:4. ACM, 2008.

[8] W. Cellary and G. Jomier. Consistency of versions in object-oriented databases.

In Proc. of 16th International Conference on Very Large Databases, pages 432–441.

Morgan Kaufmann, 1990.

43

BIBLIOGRAPHY 44

[9] S. Cockcroft. A taxonomy of spatial data integrity constraints. GeoInformatica,

1(4):327–343, 1997.

[10] S. Cockcroft. The design and implementation of a repository for the management of

spatial data integrity constraints. GeoInformatica, 8:49–69, 2004.

[11] F. Currim, S. Currim, C. Dyreson, R. Snodgrass, S. Thomas, and R. Zhang. Adding

temporal constraints to xml schema. Knowledge and Data Engineering, IEEE Trans-

actions on, PP(99):1, 2011.

[12] F. Currim and S. Ram. Modeling spatial and temporal set-based constraints during

conceptual database design. Info. Sys. Research, 23(1):109–128, 2012.

[13] V. Delis and T. Hadzilacos. On the assessment of generalisation consistency. In

Advances in Spatial Databases, volume 1262 of Lecture Notes in Computer Science,

pages 321–335. Springer Berlin / Heidelberg, 1997.

[14] X. Deng, H. Wu, and D. Li. Mrdb approach for geospatial data revision. In Proc.

of SPIE, the International Society for Optical Engineering. Society of Photo-Optical

Instrumentation Engineers, 2008.

[15] T. Dias, G. Câmara, and C. Davis. Geographic Databases, chapter Spatio-temporal

models, pages 147–180. MundoGEO, 2005.

[16] A. Doucet, M. Fauvet, S. Gançarski, G Jomier, and S. Monties. Using database

versions to implement temporal integrity constraints. In CDB, pages 219–233, 1997.

[17] A. Doucet, S. Gançarski, G. Jomier, and S Monties. Integrity constraints and ver-

sions. In FMLDO, pages 25–39, 1996.

[18] A. Doucet, S. Gançarski, G. Jomier, and S. Monties. Integrity constraints in multi-

version databases. In BNCOD, pages 56–73, 1996.

[19] A. Doucet and S. Monties. Versions of integrity constraints in multiversion databases.

In DEXA, pages 252–261, 1997.

[20] M. Egenhofer, E. Clementini, and P. Di Felice. Evaluating inconsistencies among

multiple representations. In Proc. of the Sixth International Symposium on Spatial

Data Handling, volume 2, pages 901–920, 1994.

[21] A. Friis-Christensen and C. Jensen. Object-relational management of multiply repre-

sented geographic entities. In Proc. 15th International Conference on Scientific and

Statistical Database Management SSDBM, 2003.

BIBLIOGRAPHY 45

[22] S. Gançarski and G. Jomier. A framework for programming multiversion databases.

Data Knowl. Eng., 36:29–53, January 2001.

[23] H. Gao, H. Zhang, D. Hu, R. Tian, and D. Guo. Multi-scale features of urban

planning spatial data. In 18th International Conference on Geoinformatics, pages

1–7, june 2010.

[24] D. Gubiani and A. Montanari. A conceptual spatial model supporting topologically-

consistent multiple representations. In Proc. of the 16th ACM SIGSPATIAL, GIS

’08, pages 9:1–9:10. ACM, 2008.

[25] R. Guting. An Introduction to Spatial Database Systems. The VLDB Journal,

3(4):357–400, 1994.

[26] M. Hampe, K. Anders, and M. Sester. Mrdb applications for data revision and real-

time generalisation. In Proceedings of the 21st International Cartographic Conference,

pages 10–16. Citeseer, 2003.

[27] J. Longo, L. Camargo, C. Medeiros, and A. Santanchè. Using the dbv model to

maintain versions of multi-scale geospatial data. In Advances in Conceptual Modeling,

volume 7518 of Lecture Notes in Computer Science, pages 284–293. Springer Berlin

Heidelberg, 2012.

[28] S. Mäs and W. Reinhardt. Categories of geospatial and temporal integrity con-

straints. In Advanced Geographic Information Systems Web Services, 2009. GEOWS

’09. International Conference on, pages 146–151, feb. 2009.

[29] S. Mäs, F. Wang, and W. Reinhardt. Using ontologies for integrity constraint defini-

tion. In Proc. of the 4th International Symposium On Spatial Data Quality, ISSDQ,

pages 304–313, 2005.

[30] R. McMaster and K. Shea. Generalization in digital cartography. In Resource Pub-

lication of the Association of American Geographers, 1992.

[31] C. Medeiros and M. Cilia. Maintenance of binary topological constraints through

active databases. In Proceedings of the 3rd ACM Workshop on Advances in GIS,

pages 127–134. Citeseer, December 1995.

[32] OGC. Opengis implementation specification for geographic infor-

mation - simple feature access - part 1: Common architecture.

http://www.opengeospatial.org/standards/sfa.

[33] OMG. Ocl 2.3.1. http://www.omg.org/spec/OCL/2.3.1.

BIBLIOGRAPHY 46

[34] P. Oosterom. Research and development in geo-information generalisation and mul-

tiple representation. Computers, Environment and Urban Systems, 33(5):303–310,

2009.

[35] P. Oosterom and J. Stoter. 5d data modelling: Full integration of 2d/3d space, time

and scale dimensions. In Proc. GIScience 2010, pages 310–324, 2010.

[36] R. Pandey. Architectural description languages (adls) vs uml: a review. SIGSOFT

Softw. Eng. Notes, 35:1–5, 2010.

[37] D. Papadias and T. Sellis. On the qualitative representation of spatial knowledge in

2d space. VLDB Journal, 3:479–516, 1994.

[38] C. Parent, S. Spaccapietra, C. Vangenot, and E. Zimányi. Multiple representation

modeling. In Encyclopedia of Database Systems, pages 1844–1849. Springer US, 2009.

[39] C. Parent, S. Spaccapietra, and E. Zimányi. The murmur project: Modeling

and querying multi-representation spatio-temporal databases. Information Systems,

31(8):733–769, 2006.

[40] Y. Piao, X. Wang, and Z. Shang. Integrated consistency constraints checking in a

complicated development environment. In International Symposium on Computa-

tional Intelligence and Design, ISCID ’08, volume 2, pages 190 –193, 2008.

[41] A. Ruas and C. Duchêne. Chapter 14 - a prototype generalisation system based

on the multi-agent system paradigm. In Generalisation of Geographic Information,

pages 269–284. Elsevier Science B.V., 2007.

[42] M. Salehi, Y. Bédard, M Mostafavi, and J. Brodeur. From transactional spatial

databases integrity constraints to spatial datacubes integrity constraints. In Proc. of

the 5th International Symposium on Spatial Data Quality, 2007.

[43] M. Salehi, Y. Bédard, M. Mostafavi, and J. Brodeur. Formal classification of integrity

constraints in spatiotemporal database applications. Journal of Visual Languages &

Computing, (5):323–339, 2011.

[44] L. Sarjakoski. Conceptual models of generalisation and multiple representation. In

Generalisation of Geographic Information, pages 11–35. Elsevier Science B.V., 2007.

[45] S. Spaccapietra, C. Parent, and C. Vangenot. Gis databases: From multiscale to

multirepresentation. In Abstraction, Reformulation, and Approximation, volume 1864

of Lecture Notes in Computer Science, pages 57–70. Springer Berlin / Heidelberg,

2000.

BIBLIOGRAPHY 47

[46] J. Stoter, T. Visser, P. van Oosterom, W. Quak, and N. Bakker. A semantic-rich

multi-scale information model for topography. International Journal of Geographical

Information Science, 25(5):739–763, 2011.

[47] B. Thalheim. Integrity constraints in (conceptual) database models. In The Evolution

of Conceptual Modeling, volume 6520 of Lecture Notes in Computer Science, pages

42–67. Springer Berlin / Heidelberg, 2011.

[48] F. Wang and W. Reinhardt. Extending geographic data modeling by adopting con-

straint decision table to specify spatial integrity constraints. In The European Infor-

mation Society, Lecture Notes in Geoinformation and Cartography, pages 435–454.

Springer Berlin Heidelberg, 2007.

[49] S. Zhou and C. Jones. A multirepresentation spatial data model. In Proc. 8th

International Symposium in Advances in Spatial and Temporal Databases – SSTD,

pages 394–411, 2003. LNCS 2750.

