
Multimedia Systems (2007) 12:403–421
DOI 10.1007/s00530-006-0050-0

REGULAR PAPER

User-author centered multimedia building blocks

André Santanchè · Claudia Bauzer Medeiros ·
Gilberto Zonta Pastorello Jr

Published online: 7 September 2006
© Springer-Verlag 2006

Abstract The advances of multimedia models and
tools popularized the access and production of multi-
media contents: in this new scenario, there is no longer
a clear distinction between authors and end-users of a
production. These user-authors often work in a collabo-
rative way. As end-users, they collectively participate in
interactive environments, consuming multimedia arti-
facts. In their authors’ role, instead of starting from
scratch, they often reuse others’ productions, which can
be decomposed, fusioned and transformed to meet their
goals. Since the need for sharing and adapting produc-
tions is felt by many communities, there has been a
proliferation of standards and mechanisms to exchange
complex digital objects, for distinct application domains.
However, these initiatives have created another level of
complexity, since people have to define which share/
reuse solution they want to adopt, and may even have
to resort to programming tasks. They also lack effective
strategies to combine these reused artifacts. This paper
presents a solution to this demand, based on a user-
author centered multimedia building block model—the
digital content component (DCC). DCCs upgrade the
notion of digital objects to digital components, as they
homogenously wrap any kind of digital content (e.g.,
multimedia artifacts, software) inside a single compo-
nent abstraction. The model is fully supported by a

A. Santanchè (B) · C. B. Medeiros · G. Z. Pastorello Jr
Institute of Computing, UNICAMP, CP 6176,
13084-971 Campinas, SP, Brazil
e-mail: santanch@ic.unicamp.br

C. B. Medeiros
e-mail: cmbm@ic.unicamp.br

G. Z. Pastorello Jr
e-mail: gilberto@ic.unicamp.br

software infrastructure, which exploits the model’s
semantic power to automate low level technical activi-
ties, thereby freeing user-authors to concentrate on cre-
ative tasks. Model and infrastructure improve recent
research initiatives to standardize the means of
sharing and reuse domain specific digital contents. The
paper’s contributions are illustrated using examples
implemented in a DCC-based authoring tool, in real
life situations.

Keywords Content composition · Ontology-based
annotation · Digital content component · Multimedia
authoring · Reusable content · Reusable components

1 Introduction

In the early days, the task of building multimedia
applications was closely related to that of a software
development process, being assigned to computing pro-
fessionals in charge of writing code. This perspective
propelled what we call “process-centric development”.
There was a clear distinction between the author (devel-
oper) and the end-user (consumer) of multimedia pro-
ductions. This scenario progressively changed in many
ways: (1) multimedia tools became easier to use, being
accessible to nonprofessional developers; (2) the evolu-
tion of open standards combined with the Internet fos-
tered the sharing, reuse and adaptation of productions;
(3) in the multimedia context, as in other domains, soft-
ware involves not only executable code, but also the dig-
ital content that this code handles, giving origin to what
we call “content-centric development”. The combina-
tion of these factors progressively shaped a new kind of
user of multimedia applications, the user-author, illus-
trated in Fig. 1.

404 A. Santanchè et al.

Fig. 1 Diagram illustrating
our perspective of today’s
user

Under this perspective, these users can be seen as
nodes of a shared content space, consuming multimedia
artifacts (incoming arrows)and reshaping them through
reuse (outgoing arrows). Node labelled (1) represents
a user that is only a consumer; node (2) represents
an author who works from scratch. User-authors alter-
nate and combine their roles as creators and consumers,
node (3). This collective usage scenario reflects today’s
reality, in which almost any user is also an author of
some artifact (from simple text to complex multimedia
presentations and software applications). As these arti-
facts travel among the nodes/users, they can be updated,
adapted, modified, improved and shared again. This pro-
cess of getting a content to update, adapt, modify and/or
improve it, is the essence of the reuse concept. Being
mainly noncomputer professionals, these users are pro-
pelled to become “reusers” in their authoring task, since
it does not make sense to build an artifact from scratch
when they have good material at hand and work under
time and resources constraints. From now on, we will
name this user “author”, for short, adopting the term
“user-author”, whenever we want to emphasize these
two interlaced roles.

We point out that, for us, multimedia authoring goes
beyond creating productions using specialized author-
ing tools (e.g., Flash, Director or Toolbook). From an
author’s perspective, user-authoring means producing
any digital content involving multimedia artifacts and
taking advantage of tools available in a standard compu-
tational environment (e.g., text editors, presentation edi-
tors, spreadsheets, but also multimedia authoring tools).
In this sense, the web can be seen as a virtual collabo-
rative space for multimedia content production, where
communities exchange digital artifacts. Moreover, we
stress the need, in this context, to provide not only a
model, but an infrastructure to implement the model
and support its management and user-authoring. Pres-
ent models and infrastructure are limited in aspects such
as: (1) tradeoff between ease of use and reusability; (2)
nature of content; (3) domain of application.

1.1 Tradeoff between ease of use and reusability

There are two perspectives to analyze authors’ reuse
practices. In the first perspective, authors reuse multi-
media artifacts “as is”, in the sense that they just take the
artifact and insert it in a production, without modifica-
tions. In this case, authors can be portrayed as composers
of multimedia artifacts, assembled from many sources.
This kind of sharing and reuse is well supported by mul-
timedia technologies when the shared/reused artifacts
are basic multimedia files, e.g., an image, a video. In the
second perspective, authors can decompose and adapt
the reused production and fuse reused parts into a new
production. This perspective involves the need for com-
plex digital objects [4] to be shared. These objects can
comprise many multimedia items and the relationships
among them.

Both desirable factors in fostering user-author prac-
tices, “ease of use” and “flexibility in sharing/reuse”, do
not coexist harmoniously. Solutions that support ease of
use (e.g., a family of interrelated tools) are limited to
the formats supported by the tools themselves. On the
other hand, solutions that are geared toward reuse are
difficult to use. For instance, MPEG-21 [9], an initiative
in the multimedia domain that is not constrained to spe-
cific tools or application types, and thus conducive to
reuse, is difficult to use in authoring activities.

Our work overcomes this tradeoff between “ease of
use” and “freedom to share, adapt and reuse”. It presents
a solution that combines author-friendliness with a
model and infrastructure for sharing and reusing, which
is not constrained to specific tools or types of products.

1.2 Content nature and application domain barriers

Content nature (executable software vs. content in gen-
eral) and solutions driven by the application domain
present limitations to user-authoring: (1) process-cen-
tric models are mainly focused in professional software

User-author centered multimedia building blocks 405

developers and program code, and do not contemplate
other kinds of process descriptions accessible to non-
professionals, e.g., workflows, spreadsheets; (2) content-
centric models are designed to be used in specific
application domains; (3) the process-centric × content-
centric division is a barrier when the author wants to mix
executable software and content, or when the artifact to
be shared/reused cannot be classified inside one of these
categories (e.g., a spreadsheet sometimes contains exe-
cutable routines, sometimes not).

As will be seen, our approach introduces an upgrade
from a “digital object” to a “digital component”. These
components, called DCCs, are generic “building blocks”
that can be used by authors in their compositions, regard-
less of the nature of their content, and are not
constrained to a specific family of tools or kinds of
applications. DCCs are self-descriptive units, semanti-
cally annotated using taxonomic ontologies. An impor-
tant strategy of our infrastructure is based on the notion
of content-type driven execution, in which a given arti-
fact “searches for” appropriate software to execute it,
thus helping the consumer and production roles.

The main contributions of this paper are thus: (1)
presentation of DCCs as a user-author centered build-
ing block in the multimedia context; (2) analysis of the
notion of content-type driven execution under differ-
ent guises and (3) presentation of a content-type driven
execution strategy tailored to the context of user-author
multimedia development.

These contributions arise from our analysis of require-
ments needed for full-fledged user-authoring. This anal-
ysis is itself a contribution, establishing guidelines
against which other proposals can be evaluated. The
DCC model is confronted favorably with complex dig-
ital object approaches, and mainly with the MPEG-21
standard that addresses the multimedia domain. The pa-
per presents practical examples implemented in a DCC-
based authoring tool, which illustrate the benefits of our
solution. These examples come from the experience of
the first author in developing an authoring environment
that is being used in elementary and high schools in the
city of Salvador, Brazil.

Our presentation first lays the foundations of the
DCC model and infrastructure, being followed by the
materialization of this model in the tasks of reus-
ing and authoring. Section 2 presents an overview of
related work. Section 3 presents the requirements
that led to our user-author multimedia building block.
Section 4 briefly presents our DCC model. Section 5
introduces the notions of content-type driven execu-
tion and of the companion DCC as central foundations
to relate content resources with content handling soft-
ware, and shows how these notions improve multimedia

authoring. Sections 6 and 7 discuss retrieval mecha-
nisms and some implementation issues. Sectin 8 sum-
marizes how the DCC model and infrastructure meet
the requirements of Sect. 3. Finally, Sect. 9 presents con-
clusions and ongoing efforts.

2 Related work

This section presents the research issues related with
the main contributions of this paper. First, since DCCs
define a model and infrastructure suitable for process-
centric and content-centric development, the first three
subsections analyse the philosophy behind these two
currents, and models adopted by them for sharing/reus-
ing artifacts. Section 2.4 compiles and classifies a set of
strategies used for content-type driven execution.

2.1 Process-centric × content-centric development

In order to support authors who want to design and
develop applications, a key question must be answered:
what is the raw material employed by these authors in
their work? The approach used to build the application
will be defined by the raw material: content (content-
centric development) or executable software (process-
centric development).

In a typical content-centric development project, au-
thors start from content resources, and transform, cus-
tomize and combine them to form a resulting material,
which can vary from a simple presentation to a sophis-
ticated multimedia production. The backbone of con-
tent-centric development is thus formed by interrelating
content artifacts. These artifacts in turn drive demands
for software, e.g., a video file can require a video player
routine to enable it being shown. Additional software
routines can be inserted inside the content structure,
like a Javascript routine inside a web document, with the
content playing the central role. We can imagine such an
application organized in layers, as illustrated in Fig. 2a,
where the user-author roles of authoring and consum-
ing are distinguished. The content layer comprises the
main content artifacts used in the application; the soft-
ware layer comprises all software routines requested to
manipulate this content and the result layer corresponds
to the in-memory composition of the content and soft-
ware layers necessary to execute the application. As
shown in the figure, in the content-centric approach the
author deals with the content layer and the user interacts
with the result.

In the process-centric approach, on the other hand,
the process description plays the central role, being used
to design or implement an application. Programming

406 A. Santanchè et al.

Fig. 2 Diagrams illustrating
(a) content-centric and (b)
process-centric approaches

languages are the usual ways to implement process-
centric applications. There are, however, higher level
approaches more suitable to the nonexpert authors, e.g.,
composition of software components and workflow
specification. As illustrated in Fig. 2b, in the process-
centric approach the authoring role deals with the
software layer.

Since in the content-centric approach the raw mate-
rial is the content, the strategies to produce, share and
reuse content are based on content files or packages.
The mechanisms to combine content pieces are either
constrained to the formats supported by a tool or fam-
ily of tools, or limited to a specific kind of product, as
explained before. In a process-centric implementation,
on the other hand, the raw material is the executable
software, and the strategies to produce, share and reuse
content emphasize executable units (software compo-
nents, libraries, frameworks, software templates, etc.),
which are prepared to be adapted and to work together
with other software units.

The research and models aimed at sharing, reusing
and composing productions are highly influenced by
these two currents. On the one side, there are process-
centric initiatives in the software engineering domain,
where one of the main focus is on software components
to encapsulate program code [13]. On the other side,

there are many content-centric initiatives to
systematize the packing, deployment, reuse and com-
position of domain specific content in areas such as edu-
cation [1,15,33], digital libraries [10,35], multimedia [16]
and software development related artifacts [25].

2.2 Software components (process-centric approach)

Software components have been the main unit adopted
for program code reuse. There are many definitions for
software component [14]. Even if they do not achieve
total agreement, some characteristics are present in all
definitions, or can be inferred from them: (1) a compo-
nent is an entity meant to be composed; (2) each com-
ponent publishes its functionality through a well-defined
and open interface; (3) components can be nested into
other components.

From a practical point-of-view, software components
have additional characteristics, observed in the wide-
spread component initiatives: (1) components contain
some kind of binary code that implements the function-
ality declared in their interface and (2) the component
interface and implementation are assembled into a stan-
dard package for deployment purposes.

The separation between interface and implementa-
tion resulted in a generic mechanism to explicitly express

User-author centered multimedia building blocks 407

how a component can be connected to other compo-
nents, independent of its implementation details.
Software components hide their heterogeneity inside a
homogeneous capsule. For these reasons, the software
component model has been adopted as a basis for the
DCC model.

2.3 Complex digital objects (content-centric approach)

In multimedia authoring, the ability of sharing and reus-
ing multimedia artifacts is essential. In the last years,
many domain specific initiatives have been concerned
with sharing and reusing digital content. Since each
research domain uses its own terminology to refer to
the sharable and reusable entities, we will use a term
borrowed from digital libraries: complex digital object
(or simply digital object) [4], whose concept and model
can be considered a common foundation.

In the multimedia context, there are many standards
for different kinds of media and their applications. Many
of these standards overlap each other and produce com-
petitive solutions to the same needs. The purpose of
the MPEG-21 initiative [9] is to bring these standards
together. MPEG-21 [16] is a framework that offers sup-
port for multimedia delivery and consumption, simpli-
fying transactions and ensuring content interoperability.
It defines many content/consumption related issues, like
unique identification, rights and permissions through a
specific language (Rights Expression Language) [37],
etc. A fundamental piece of this framework is the Digi-
tal Item, which is a basic unit of reusable content repre-
sentation, and is declared in the digital item declaration
(DID) [8].

The engine responsible for digital item processing
(DIP engine [9]) can be considered as a software frame-
work that is extensible with software plug-ins. MPEG-21
methods (DIMs) can be attached to digital item descrip-
tions and then can be related to digital content items, and
can be shared inside complex digital objects.

The open archival information system (OAIS) is a ref-
erence model, whose purpose is to address preservation
of complex digital objects over the long term, admitting
impacts of changing technologies and user community
[10]. As time goes by, appropriate tools to interpret, pro-
cess and present a specific kind of content may not be
available in the future. To deal with this problem, OAIS
defines that each piece of content must be associated
with a representation information, whose purpose is to
map the data into more meaningful concepts. One pos-
sible kind of representation information is the access
software, which can access and interpret the content.
Metadata encoding & transmission standard (METS)
is a standard related to OAIS that specifies an XML

document format to represent metadata that is neces-
sary for complex digital object management and
exchange [35]. METS specifies a behavior support asso-
ciated with complex digital objects. These declarations
relate items of content with a web services API provided
by Fedora [34], a general purpose repository service,
which supports complex digital objects. It defines a spe-
cial disseminator object that can process other objects,
through web services requests. This model is well de-
fined for objects inside the repository.

There are many initiatives working around the con-
cept of Learning Objects [15], which can be conceived
as an educational complex digital object. These educa-
tional initiatives have agreed over an architecture to
enable the relationship between the educational con-
tent and the runtime environment (RTE), which is the
software system where this content will be used. This
relationship is useful when the RTE wants to track the
interaction of a student with an educational object, e.g.,
what parts of an HTML tutorial a student visited, or the
number of test questions the student answered correctly.
There is an agreement over a proposal from the Aviation
Industry CBT Committee (AICC) [19], which is based
on the assumption that any educational content will be
web-based. AICC defined an API that is responsible for
specifying what services can be requested from the RTE
and what information can be delivered to it.

2.4 Content-type driven execution

Many multimedia systems need to dynamically invoke
software routines according to the type of the content
to be handled, e.g., a web browser displaying a docu-
ment with text, images and animations; a software to
present slides that runs a video inside a slide, containing
text and graphics. This section analyses a set of strat-
egies adopted by this kind of system to dynamically
associate content with blocks of software specialized in
dealing with that content. Established strategies include
software frameworks, active document components and
software plug-ins.

2.4.1 Software frameworks

The more similar two content types are more closely
related to their potential functionalities. Systems can
exploit this aspect defining a set of software routines
to be shared by content types based on their similarity.
For example, many image file formats can have spe-
cific routines to decode their content, and share a li-
brary of routines that implement all other image related
functionality. This has two benefits: the same code is ap-
plied to many similar content types, and the system deals

408 A. Santanchè et al.

with the decoded images in a homogeneous way. These
characteristics can be dealt with using software
frameworks. For instance, object-oriented software
frameworks usually define a generic class containing
shared routines, and subclasses to implement the sin-
gularities of each content type. A framework example is
Mozilla NGLayout [26], responsible for rendering web
documents inside Mozilla web products, like browsers
and e-mail clients. If an author wants to reuse a soft-
ware framework to build a new system, this process will
involve adapting program code. For instance, consider
an author who wants to build a web page editing tool,
and chose the Mozilla NGLayout framework to render
the pages, then the author must adapt his/her code to
properly embed the framework.

2.4.2 Software plug-ins

Software plug-in architectures enable to pack and
deploy a set of software routines, related to content
types, and to use them to dynamically extend systems to
deal with new kinds of content. Some systems, like web
browsers, have mechanisms to automatically identify a
required plug-in for a new content type, and to find, load
and execute it to deal with the content. Software plug-ins
are more flexible reuse-wise than software frameworks.
Instead of being deployed along with the host system,
they can be fetched on demand. Therefore, new plug-ins
can be developed to deal with new content types, with-
out the need of modification of the host system code.
However, plug-ins are usually designed geared to a spe-
cific system, e.g., Mozilla plug-ins, Eclipse plug-ins [5],
Protégé plug-ins [24]. Like in software frameworks, it
is necessary to adapt programming code to port (reuse)
these plug-ins to a new system.

2.4.3 Active document components

A set of routines that deal with content types can be
encapsulated inside a software component. Active docu-
ment architectures, like Microsoft OLE [6] and
Apple OpenDoc [3], allow systems to embed pieces
whose types they do not support directly. Whenever
the system needs to deal with these content pieces, it
forwards the operation to the appropriate software com-
ponent. Active document components and plug-ins
operate in a very similar way. However, in the former the
same component can be usually shared by many distinct
applications, whereas in the latter a plug-in is designed
for a specific application. On the other hand, active doc-
ument components are highly dependent on a specific
operating system.

The mechanisms to identify the content type in these
three strategies are usually: (1) file extension, a poor and
ambiguous mechanism (many formats have the same
extension); (2) file header, not a standardized mecha-
nism, since each content type has a distinct format to
define its header; (3) MIME media type (RFC2046). As
will be seen, we solve these issues through the notion of
content-type driven execution, in which a given kind of
media “finds” the appropriate software to run it. Media
and software are encapsulated into our components; the
discovery and combination mechanism is based on spe-
cific component interface matching characteristics.

3 Requirements for user-author multimedia building
blocks

This section defines a set of requirements we consider
necessary to create building blocks for user-author mul-
timedia. The author adopts these blocks to produce,
adapt, share and reuse any kind of digital content, rega-
rdless of its nature (executable software or not). At the
same time, the conception enables exploring the specific
functionality provided by each kind of digital content.

3.1 Breaking barriers between content- and
process-centric development

As presented in Sect. 2.1, strategies to develop com-
puter-based applications are highly influenced by the
raw material employed in the work: content (content-
centric development) or executable software (process-
centric development). In particular, in the multimedia
domain, both approaches can be adopted. Authors can
follow a content-centric approach and produce multime-
dia presentations combining multimedia artifacts, which
are presented following a time-line, or are organized
over pages. On the other hand, they can follow a pro-
cess-centric approach to build a multimedia application,
using software routines. However, authoring models and
mechanisms in process and content-centric currents fol-
low parallel and distinct approaches to solve closely
related problems. There is a lack of a unifying model
to combine both.

The distinction between content and process-centric
approaches is influenced by implementation concerns.
In both cases the production is constrained to limits im-
posed by the layer where the authors work.
Moreover, it is difficult to produce compositions that
combine pieces of content and software, mixing both
approaches. Furthermore, in the content-centric app-
roach it is expected that software development experts
will previously implement the software layer. Authoring

User-author centered multimedia building blocks 409

is expected to be limited to contents, since it is not envis-
aged that authors can contribute in writing and sharing
software artifacts.

Here, our proposal is to reduce the distance between
user and author. Thus, our first requirement is that a
model must overcome the barriers between content- and
process-centric approaches. The author should be able
to combine pieces of content without needing to be con-
cerned with their nature (software or content).

3.2 Providing a unified abstraction: potential
× provided functionality

The content-centric approach works from “static” arti-
facts, in the sense that they can be seen as complex
data (as opposed to software). Such artifacts may be
constructed out of a variety of content pieces. The type
associated with each such piece denotes which opera-
tions can be applied over it (e.g., a video content can
be played; however, in order to be played it requires
specific software). Similar to what is found in Internet
media standards—e.g., MIME (RFC2046)—we use the
term content type to denote the content, its internal rep-
resentation and associated operations. We call the set
of operations associated with a content type to be its
“potential functionality”, in the sense that their imple-
mentation is intrinsically not part of the content (e.g.,
the video player software is not part of the video).

In a process-centric approach, instead, we deal with
executable instructions, and thus have a “provided func-
tionality” inherent to any process description module
(e.g., a software component, a workflow specification).
In particular, a software component explicitly declares
its provided functionality by means of its public facet, its
interface. The software component model supports the
distinction between public and private portions.
Through this distinction, it is possible to control which
aspects of a component are published (accessible to
users). Interface specification can be seen as an abstrac-
tion of a component’s functionality, and can be used for
component discovery, selection and composition. Such
an abstraction has a tight relationship with reusability
[17].

In the content-centric approach, instead of an inter-
face, there appears the notion of metadata as an abstrac-
tion of the content. Interfaces describe what a software
“can do”, whereas metadata describe what a content
“is”. There is no standard mechanism, however, to spec-
ify applicable operations, which, depending on the case,
must be deduced from metadata.

Thus, a second requirement for user-authoring is to
define a unified abstraction comprising process and
content encapsulation, which is used in their reuse,

discovery, selection and composition. Our solution to
this unified abstraction is a combination of metadata
and interface specification.

3.3 Exposing a homogeneous interface

The notion of composition appears in both content-cen-
tric and process-centric approaches, e.g., a software can
be created by interlinking components, or a complex
multimedia data artifact can emerge from the composi-
tion of distinct data blocks. Composition complexity dra-
matically increases with the amount of different blocks
created, and the number of possible combinations grows
dramatically. The composition procedure can be simpli-
fied if each piece that participates in it is encapsulated
behind a homogeneous interface. In point II, the inter-
face is used for abstraction, whereas here homogeneity
fosters ease in composition.

The process-centric approach of software compone-
nts takes advantage of this interface paradigm, which
allows distinct software building tools to deal with the
same set of components. A widespread example is the
JavaBeans technology, where beans are homogeneously
treated by building tools.

A third requirement is, therefore, using homogeneous
interfaces to access content and software. In the content-
centric approach, however, there is no such consensus.
Some tools define their own proprietary format. Initia-
tives related with content reuse standardization propose
domain specific pre-defined interfaces, which restricts
their applicability in other areas.

3.4 Supporting content-type driven execution

The main content-centric reuse initiatives stress the
importance of selecting appropriate program code,
related to the reused content. In the multimedia con-
text, MPEG-21 points out the need for specifying not
only a standard for media exchange, but also a complete
framework, including the software dimension [16]. Edu-
cational initiatives stress the necessity of defining stan-
dards in which reusable educational content pieces will
dynamically interact with educational tools through an
API. In the digital libraries context, the Open Archival
Information System (OAIS) defines how to maintain
software tools capable of interpreting specific content
formats, which will be preserved in the long term [10].

The standardization efforts discussed partially deal
with this issue, as seen in Sect. 2.3. The MPEG-21
methods (DIMs) are expressed as scripts. However, this
approach to build software routines imposes some con-
straints on the user-author. First, since the methods have
to use specific MPEG-21 libraries (DIBO), their func-

410 A. Santanchè et al.

tionality is restricted. Second, MPEG-21 DIMs work as
auxiliary routines, and have no structure appropriate
for sharing and reusing among authors. The Fedora [34]
repository service offers a means of attaching execut-
able functionality to content. However, it lacks a strat-
egy for sharing and reusing complex digital objects, and
their related disseminators. The API defined by AICC
within the learning objects [15] initiative also addresses
this execution aspect. Unfortunately, the AICC standard
is highly specialized in specific tasks envisaged in web
activities for education.

Our fourth requirement is that there must be a mech-
anism that supports the selection of an appropriate soft-
ware routine that handles a content according to its type.

4 A very brief overview of DCC

A Digital content component [29] is a unit of process
and/or content reuse. From a high level point of view,
it can be seen as content (data or software) encapsu-
lated into a semantic description structure. It is com-
prised of four distinct sections: (1) the content itself
(data or code), in its original format or a DCC compo-
sition; (2) the declaration, in XML, of an organization
structure that defines how components within a DCC
relate to each other; (3) a specification of DCC inter-
faces, using adapted versions of WSDL [11] and OWL-S
[18]; (4) metadata to describe functionality, applicability,
use restrictions, etc., using OWL [32].

Digital content component are assumed to be stored
in repositories available on the web. Interface and meta-
data sections, respectively (3) and (4), are used to help
retrieve the appropriate DCCs from the repositories and
reuse them [30]. Furthermore, there is a DCC infrastruc-
ture that comprises an architecture to assemble DCCs
into a desired product. A DCC composition is consid-
ered to be any digital artifact built by combining DCCs,
and can vary from a multimedia document to a software
application.

The DCC model was inspired by software engineer-
ing’s software component paradigm. However, unlike
software components, DCCs do not need to encapsu-
late binary program code to be useful as part of appli-
cations. It is possible to encapsulate inside a DCC only
a multimedia artifact, other kinds of software (such as
workflows), or both, and use it directly to compose an
application. DCCs are thus more accessible to authors
who are not experts in software development; they are
based on an approach where the end-user is the author,
and the components are the “raw material” [22,27].

We differentiate between two kinds of DCC, process
and passive DCCs. The former encapsulates executable

instructions, the later encapsulates any other kind of
content. In order to handle operations accepted by a
passive DCC, suitable software is needed. In our model,
this role is performed by the so-called companion DCC,
see Sect. 5.1. Going back to the video example, a video
V can be encapsulated into a passive DCC-V, and video
playing software VP into a process DCC-VP. If VP can
play V, then DCC-VP is a companion to DCC-V. Other
characteristics of DCC will be introduced via examples
in subsequent sections. For internal details, not relevant
to the paper, on DCCs, see [29].

5 Content-type driven authoring

A passive DCC is a component that encapsulates con-
tent. Its interface declares the operations that can be
performed on this content. However, being passive, it
does not have executable software to implement the
operations explicitly declared on its interface. This raises
questions that we will answer in this section. First, since
a passive DCC declares operations and does not imple-
ment them, how are these declared operations asso-
ciated with their respective code? The answer to this
question is based on the notion of content-type driven
execution and on the companion DCC strategy, treated
in Sect. 5.1. Second, how can content-type driven execu-
tion be explored to create a meaningful author-friendly
authoring environment? This is treated in Sect. 5.2. In
our implementation, the subsystem responsible for sup-
porting authoring and execution of any composition
involving DCCs is called execution engine, described in
Sect. 7.

5.1 DCC content-type driven execution

As discussed in Sect. 2.4, systems capable of handling
more than one content type, e.g., web browsers and text
processors, have mechanisms to delegate each content
type to its respective content handler. We recall that con-
tent types implicitly or explicitly determine a content’s
potential functionality. This section analyses the DCC
mechanism that makes some of the potential function-
ality operations effective.

In the content-centric approach, the content type is
used to define the software blocks appropriate to deal
with it. We thus now propose the notion of content-type
driven execution, in contrast to the process driven exe-
cution of the process-centric approach. A well known
example of this kind of execution is a web page, which
can be taken as a combination of content pieces. In this
case, for each kind of content piece (HTML document,
image, Flash animation, MPEG video), the web browser

User-author centered multimedia building blocks 411

Fig. 3 DCC content-type
driven execution diagram

invokes an internal specialized routine or a software
plug-in to deal with it. The content type “drives” the
execution.

A passive DCC is content-centric, and its interface
defines how this content can be accessed. Since the pro-
gram code for the operations declared in the interface
is not embedded in a passive DCC, interface opera-
tions are implemented in a special kind of process DCC
named companion DCC. The companion DCC lends its
operations to a passive DCC in a way that is transparent
to composition authors. The choice of the appropriate
companion for a passive DCC is context sensitive, and is
determined by the execution engine, when this passive
DCC is used. This allows a homogeneous treatment of
passive and process DCCs from the author’s perspective.
Moreover, the focus in the content is the best option for
content-centric composition.

Figure 3 shows an example of content-type driven
execution. In the figure, a passive DCC (a crab image
file) is associated with a companion DCC (software that
can display the image) based on its content type. Taxo-
nomic ontologies play a central role in this matching pro-
cess. We use the term taxonomic ontology, as defined by
[12], to express a particular kind of ontology, whose pur-
pose is to provide a referential vocabulary. Its structure
organizes terms into generalization/specialization hier-
archies, and semantic links to express synonymy, com-
position, and so on.

The taxonomic ontology, illustrated in the center of
the figure, organizes and relates types of DCC, repre-
sented in the diagram by white filled circles. Lines with
a diamond in one extremity represent subsumption rela-
tionships, e.g. Passive DCC subsumes image. Dashed
lines indicate that some intermediate nodes were ommit-
ted for simplicity. Each arrow represents that a property

has companion that relates two nodes, which means
that a passive DCC type is processed by the indicated
companion DCC type.

As shown in the figure, any DCC has a DCC type,
defined in the ontology. Type specification is carried out
through an explicit reference in a DCC’s metadata sec-
tion, coded in OWL. Each DCC type represents a kind of
process (process DCC) or content (passive DCC),
and defines a minimal set of provided operations (pro-
cess DCC) or potential operations (passive DCC) in its
interface. These operations define the type’s minimal
interface, i.e., for any DCC to be considered as of that
type, it must offer at least the operations of the type’s
minimal interface. If a DCC A subsumes a DCC B, then
the minimal interface of B extends, or is equal to, the
minimal interface of A. If a DCC A defines the prop-
erty has Companion pointing to C, i.e., (A has com-
panion C), then the minimal interface of C extends, or is
equal to, the minimal interface ofA. This guarantees that
a companion DCC implements at least the operations
declared in the minimal interface of any related passive
DCC.

Figure 3 shows the cycle that associates a compan-
ion DCC to a passive DCC, following the numbers
① to ⑥. Consider the passive DCC that contains an
image ①, and defines its interface operations of its poten-
tial functionality. A subset of these operations (show-
Image and getImage) is displayed in the figure. This
passive DCC is related to the Image DCC type in the
ontology ②, whose companion is the ImageHandler
DCC ③. The execution engine asks the DCC reposi-
tory manager for a DCC of this type, see Sect. 6. The
selected DCC is loaded ⑤ and connected to the passive
DCC, which it will process ⑥. Notice that the companion
DCC declares a provided interface, which defines the

412 A. Santanchè et al.

Fig. 4 Steps followed in
Magic House authoring
system to produce a crab
DCC

same operations of the passive DCC, and implements
them.

More than one companion DCC can be related to
the same DCC type and be used for distinct contexts. In
the example, we can have, for instance, three Image-
Handler DCCs: (1) implemented in Java to run in a
stand-alone application, (2) implemented in Java to run
in a web browser (applet), and (3) implemented in C to
run in a stand-alone application. Each can have context
properties, in the metadata section, whose values are
defined in specific taxonomic ontologies.

5.2 Authoring DCC multimedia artifacts

We now show how an author produces a multimedia arti-
fact using DCCs. The presentation will use an example
implemented in the Magic House environment, which
is an educational authoring tool. It has been used in
schools in the city of Salvador, Brazil in authoring mul-
timedia learning material (e.g., animations employed
in exploring laws of physics). The present version of
our system is the result of user feedback, after over
5 years of use of Magic House. The previous Magic
House environment was a process-centric development
system, where teachers and/or students combined soft-
ware components to build applications. We remarked
that authoring was strongly influenced by reuse and
exchange of such components. End-users needed help
to find appropriate pieces to compose and to determine
which software was needed to handle a given kind of
media. This experience led to the notions of DCCs and
companions.

Magic House is based on a combination of the graph-
based authoring paradigm of [7] and the software com-
ponents’ visual editor modeling approach of tools such
as Bean Builder. The main goal of this example is to dis-
cuss the content-type driven mechanism working
behind the scenes, and to show how this mechanism
explores the semantics associated to DCCs, to provide
an author-friendly authoring environment. For simplic-
ity, this example is based on a single DCC, but the
usual Magic House’s production contains many inter-
connected DCCs.

Figure 4 shows four Magic House screenshots that
capture successive steps in a DCC production process;
the result is an animated crab, which moves inside an
aquarium. In the first step, the author requested the sys-
tem to edit an image DCC retrieved from its DCC repos-
itory. Since a DCC of type image is passive and does not
implement software to handle its content, the environ-
ment retrieves the respective companion DCC, based
on type matching from the DCC taxonomic ontology,
and context values. The latter are configurable param-
eters that specify work conditions, e.g., language. Fol-
lowing the cycle described in Sect. 5.1, the system finds
a companion DCC appropriate to handling an image
DCC. The result is shown in step 1 of Fig. 4. The com-
panion DCC opens an image editing window inside the
Magic House environment, where the author can edit
the image which is inside the DCC.

Once editing is finished, the author indicates that this
passive DCC is ready for the moment, and switches the
Magic House environment from the editing mode to the
execution mode. Here, the (edit-enabling) companion

User-author centered multimedia building blocks 413

Fig. 5 Finding and retrieving
a DCC based on type
matching

DCC associated with the crab image DCC is replaced
by another companion DCC, which also handles image
DCCs, and whose context values define it as executable
instead of editable. This new DCC is designed to be used
in the execution mode, and only displays the crab image,
as shown in the second step of the figure.

Suppose now the author wants to move the crab
through the aquarium, rather than have a static image,
he/she knows that there is a passive DCC type named
Aquarium Being that is capable of moving through
the aquarium. The Aquarium Being DCC encapsu-
lates only the being’s image; its companion DCC imple-
ments the program code to move the image. So, in step
labeled 3 in Fig. 4, the author requests to the Magic
House environment to redefine the type of crab image
DCC. The system displays a window with the DCC
ontology, from which the author can choose a new
DCC type. The author selects the Aquarium Being
DCC type. Once the change is accepted, when the au-
thor runs the application, the crab image moves through
the aquarium, as illustrated in the fourth step of the
figure.

This example shows how the content-type driven
mechanisms provide an author-friendly environment. In
steps 1 and 2, different roles (author and user) are sup-
ported by switching context and thus the companions.
Step 3 allows type changing and, as a consequence, new
kinds of compositions. Authors are concerned with the
content and the semantics they attribute to the content
and, behind the scenes, the DCC infrastructure trans-
forms the semantic indicators in executable behaviors.

6 DCC retrieval mechanism

We recall from the Introduction that user-author cen-
tered multimedia authoring, in our context, means: (1)
ease of use in sharing, interact with and running a mul-
timedia artifact and (2) the ability to find, reuse and
combine pieces of process and passive DCCs in a given
authoring step. This section shows how our DCC

retrieval mechanism works, based on the notions of
interfaces, metadata and domain ontologies. A DCC
search process is roughly composed of two steps. First,
the user specifies the requirements of a desired DCC,
and the infrastructure returns available DCC types that
meet these requirements. Next, the user chooses the de-
sired type, and the infrastructure will return a DCC that
matches the type. For details on the first step, see [30].

6.1 Finding/retrieving a DCC

Figure 5 illustrates the sequence of actions followed to
find and retrieve a DCC given its DCC type. It shows the
basic local infrastructure (a local DCC repository, execu-
tion engine and repository manager), which is replicated
at each site where DCC authors exist (A, B, C). Thin
arrows represent data exchange related to the DCC find-
ing process, and thick arrows represent DCC retrieval,
once found.

The process is started whenever a DCC is needed,
in execution or authoring activities, either directly
requested or as a companion request. All find/retrieve
processes begin by a local search and proceed to a web-
wide search if no local DCC satisfies the initial request.
First, the Execution Engine requests a DCC from
the DCC Repository Manager, informing its type.
The manager searches in the Local Repository for
DCCs of the given type.

If no local DCC satisfies the request, the reposi-
tory manager queries a UDDI registry for the DCC
type. Universal description, discovery and integration
(UDDI) [36] is a standard for a web-based registry ser-
vice, whose primary goal is to describe and discover
web services [2]. UDDI supports the description of enti-
ties other than web services. Additionally, more recent
versions of UDDI can accommodate and use identifi-
cation taxonomies provided by third parties [36]. The
DCC repository manager uses UDDI registry services
to specify which repositories have a given DCC type, via
the uniform resource identifier(URI) of each type. It is
important to note that the DCC type ontology works as a

414 A. Santanchè et al.

Fig. 6 Example of an arrangement with three machines adopting the Anima architecture

UDDI identification taxonomy, and can be used in DCC
discovery.

The local repository manager uses information from
the UDDI registry to get the Internet address of exter-
nal repositories, which contain DCCs of the required
type, and requests information about these DCCs from
these repositories. This information is given to the exe-
cution engine, which will dynamically decide which is the
most appropriate DCC for a given composition (e.g., see
Sect. 5.1). Once the engine selects the appropriate com-
ponent configuration, it asks the repository manager to
provide it (either locally or remotely). When a DCC is
retrieved from external repositories, the local repository
manager stores a local copy of it to optimize subsequent
retrieval requests, e.g., in the figure, a DCC was retrieved
from local B.

6.2 Exploiting the DCC type ontology

A specific companion DCC may not be available to an
author (e.g., if there is no ImageHandler DCC for an
Image passive DCC). However, it is possible that the
author does not want to take advantage of the full func-
tionality of a companion, but just a subset thereof. In this
case, the author may use a companion of a DCC whose
type subsumes the type of the original DCC. Return-
ing to the ontology in Fig. 3, the Image DCC type is
subsumed by the Passive DCC type, which has a com-
panion of ResourceHandler type. The Resource-
Handler companion implements an operation that
accesses the binary content of a passive DCC. It treats
any passive DCC as a flat binary resource, without con-
sidering any format particularity. Thus, in the absence of
an Image handler, the author may be satisfied by using
a ResourceHandler companion.

In other words, in the DCC model, an author can de-
fine, during composition, that a passive DCC of type A
can be adopted in lieu of DCC type B, when B subsumes
A. We point out two advantages of this mechanism.
First, as in the Image example, it simplifies compo-
sition and execution if the author does not need the

most specialized companion DCC to deal with a given
content. Second, this feature increases the potential for
composition reusability. It is important to notice that
not only DCCs will be reused, but the compositions too,
and that compositions can also become DCCs that are
stored in repositories. Authors can thus reuse a compo-
sition, totally or partially, tailoring it to their needs.

7 Implementation aspects

This section presents the architecture designed to sup-
port our framework, which has evolved from previous
projects named Anima and Magic House [31].

Anima is an infrastructure for managing and execut-
ing DCCs and their compositions. This infrastructure
determines a communication model for DCCs speci-
fying how they will interact within a composition. The
execution of a composition may have a centralized coor-
dinator or may be a result of a cooperation among
independent DCCs. All communication among DCCs is
performed through a software managed bus. Magic
House is built over Anima.

In this section, we focus on the part of the Anima
infrastructure responsible for the execution of authored
products formed by connected DCCs, and which sup-
ports the authoring process. Even though the Anima
infrastructure has many other attributions related to
DCC management and authoring tasks, we stress exe-
cution aspects to clarify the main concepts treated here.

The architecture has been designed to support local
and distributed component management and execution.
It is independent of specific programming languages,
supporting the interaction of DCCs implemented in
different languages. Figure 6 shows a possible config-
uration of the architecture considering three different
machines that run distinct operating systems, and a
UDDI service that offers the publishing/discovering
mechanism for DCCs and web services.

As pictured in Fig. 6, an environment to support DCC
execution is a combination of hardware, operating sys-
tem and programming language. For each environment,

User-author centered multimedia building blocks 415

there is a specialized Bus that is responsible for the com-
munication: (1) among DCCs connected to the same
Bus; (2) between a DCC in a Bus and a DCC in another
one, through an inter-Bus communication; (3) between
a DCC in the Bus and a web service.

The minimum infrastructure that must be available
to support any execution task is defined by the Bus and
three specialized DCCs (explained further): the Builder,
the Repository Manager and the Resolver. The execution
of a composition requires the existence of a primary
DCC responsible for starting the process and invoking
the execution of the other DCCs.

When any DCC is first invoked, it is retrieved from a
DCC repository, then it is loaded to memory and then
prepared to be executed. We call this procedure DCC
instantiation. The process of DCC instantiation is dele-
gated to a specialized DCC called Builder, which carries
out all the above instantiation steps. It also defines and
associates a runtime URI to each new instantiated DCC.
The runtime URI is used to univocally identify an exe-
cuting instance of a DCC, and is valid only during that
execution of the DCC. Instances of the same DCC will
receive distinct URIs.

When a DCC sends a message to another DCC, it
does not know exactly the destination of the message.
This source DCC sends the message through the Bus
addressed to a runtime URI . A specialized DCC, called
Resolver, intercepts the message and decides whether
the message should be sent to: (1) a DCC in the same
Bus; (2) a DCC in another Bus or (3) a web service.

There are three main scopes for message exchanging.
First, DCCs within the same Bus communicate using
native programming language schemes. A second form
is the communication between DCCs attached to differ-
ent Buses (either in a local or remote machine). The
third form involves communication between a DCC and
web services. The last two forms use simple object access
protocol (SOAP) [21] XML messages. Whenever a mes-
sage is meant to leave the Bus, the Resolver converts it
from the internal format to SOAP. This SOAP message
is based on a WSDL [11] specification. Since both DCCs
and web services are described using WSDL, there is no
need to make a distinction between them. If the receiver
is a web service, the message is already adequately for-
matted. However, if the receiver is another Bus, the
message must be converted back to the internal format.

The Repository Manager is also a specialized DCC
that works as described on Sect. 6.1. As all DCCs, the
Repository Manager uses the Bus for communication
with DCCs, including other Repository Managers. As
can be seen in Fig. 6, the Bus-Python of machine A does
not have a Repository Manager directly attached to it.

It makes use of the Repository Manager attached to
Bus-Java.

The current version of this architecture is fully func-
tional in a local environment, and is implemented in the
Java language. It implements the Bus-based communica-
tion, and can deal with process and passive DCCs. Fur-
thermore, this implemented framework uses an OWL
ontology to match passive DCCs with their compan-
ions, fully supporting the content-type driven execution
described in Sect. 5.1.

8 Meeting the requirements

This section summarizes how the DCC approach meets
the requirements presented in Sect. 3. In Sect. 8.2, we
show how DCCs bridge the gap between user interac-
tion and reuse/sharing features. Section 8.3 shows how
the author can participate in constructing executable
software by composing components. Section 8.4 shows
how DCCs break barriers between content and execut-
able software.

8.1 How DCCs meet the requirements

In the diagram illustrated in Fig. 2, we showed that
authoring tasks concentrate on the “content layer” for
the content-centric approach, and the “software layer”
for the process-centric approach. The DCC infrastruc-
ture, on the other hand, works behind the scenes and
uses DCC semantic annotations to appropriately com-
bine software and content pieces and present to the au-
thor, in a transparent way, a “result layer” perspective.
Moreover, authors’ shareable contributions are not lim-
ited to content or to software: they produce, reuse and
share both indistinctly. This meets the first requirement
(unify content- and process-centric models).

Digital content components’ functionality also meets
the second and third requirements (single abstraction
and homogeneous interface, respectively), providing a
single mechanism for consuming and authoring any mul-
timedia artifact. In the content-centric approaches, com-
plex digital objects work as content aggregators. They
are prepared to be plugged to a client platform, which
will be used to consume the content. The software nec-
essary to handle the content is concentrated in the client
platform. This platform architecture varies according to
domain standards. In MPEG-21, for example, the client
platform can be the player that will run the media in-
side the complex digital objects. Usually the client plat-
form knows each type of supported content, and the
ways to relate this content with other content types. For

416 A. Santanchè et al.

(a) (b) (c)

Fig. 7 Magic House animation illustrating a cell movement. (a) Production design, (b) and (c) passive DCCs

this reason, the combinations among content artifacts
are constrained to those pre-specified by the client plat-
form. To handle new kinds of content, not supported by
the client platform, some content-centric infrastructures
accept software extensions in the client platform.

In the DCC model, on the other hand, the inter-
face works like an explicit platform-neutral contract that
specifies how DCCs can be connected. The client plat-
form does not need to know beforehand how a DCC can
be connected to another, since it is explicitly declared.
Instead of defining client platform built-in content han-
dlers, the DCC approach defines a specialized software
DCC (companion DCC), whose purpose is to handle
the content of another DCC. In contrast with content-
centric approaches, the DCC infrastructure is based on
a thin client platform, which decentralizes content han-
dling tasks. So, authors are free to create both content
or software expansions inside DCCs; this task does not
need to be delegated to software development special-
ists that implement the client platform.

Section 5.1 already showed how the DCC model and
infrastructure meet the fourth requirement (content-
type driven execution). Compared with the approaches
to invoke software routines according to the type of
the content to be handled (software frameworks, ac-
tive document components and software plug-ins), the
use of a taxonomic ontology to associate a companion
with a passive DCC enables to express not only “how
the content is stored”, but also “how the content must
be interpreted”. Returning to the example illustrated in
Fig. 4, the same content—the drawing of a crab—can
be interpreted as a static image, or as a moving aquatic
being.

The IUHM hypermedia model of [23] addresses prob-
lems similar to ours. It encapsulates executable code
and other kinds of content in homogeneous units, meet-
ing the first requirement. IUHM provides a strategy
for content-type driven execution, and thus meets the
fourth requirement, also supporting a notion similar
to that of our companion component. The main dis-
tinction between IUHM and DCC lies in the “compo-
nent” approach adopted by DCCs, where the interface
plays a major role. The IUHM model does not meet the
third requirement, since it does not define an explicit
interface.

8.2 Swapping content and program code

This section shows examples of multimedia DCC pro-
ductions, comparing them with other approaches in
terms of facilitating user interaction × reuse. These
examples emphasize the importance of an homogeneous
model in situations where the author can use a content
or a program code to perform equivalent tasks.

Consider the following general context. In our Magic
House environment, production authors are offered a
choice of (DCC) blocks to be composed to design ani-
mations. These blocks are selected and connected by
direct manipulation using a visual tool, and custom-
ized by modifying parameters in a property sheet. A
direct connection (arrow) between two DCCs indicates
that the first DCC will send a message to the second
every time a selected event occurs in the first DCC.
A switch + clock indicates that the animation will start
by pressing the switch, and that the clock will control

User-author centered multimedia building blocks 417

Fig. 8 Diagram confronting
connection architectures

(a) (c)

(b)

synchronization. Once the composition is specified, it
can be executed.

Figure 7a shows the design of a biology production in
the Magic House environment, whose purpose is to de-
ploy an animation that illustrates how a cell moves. The
animation synchronizes two sequences of images (i.e.,
DCCs that encapsulate sequences of image frames):
shots taken from an electronic microscope showing cell
movement and diagrams that depict the movement
dynamics. The execution of this production is a movie
that synchronously shows cell movement and corre-
sponding dynamics. During execution, the clock sends
messages (ticks) to both frame sequences at a given
rate. Users can interact with this animation at any given
time, for instance, changing tick frequency, editing clock
parameters, congealing frames, etc. Here, a given au-
thor (e.g., a scientist or a biology teacher) can design
the production in the environment using the plug and
play paradigm. Another user (e.g., another scientist or
biology students) can not only execute (consume) the
production, but also interact with it and change it by
customizing its blocks.

Continuing with this example, suppose that instead
of using a video encapsulated inside a passive DCC,
the author wants to show images streamed on-line from
the electronic microscope. Here, the author will replace

the passive video DCC by a process DCC, containing
software routines to access the microscope’s images.

This example points out three important issues in
the DCC model. The first issue concerns its user-cen-
tered nature, where the distinction between multimedia
authoring and execution/consumption becomes fuzzy.
Since people playing the production can easily interact
and change it, the “audience” becomes a partner in the
authorship, by experimenting with the DCC building
blocks.

The other two issues concern the unified implemen-
tation philosophy behind passive and process DCCs.
First, the absence of a distinction between software
reuse (process-centric) and content reuse (content-cen-
tric) gives the author the freedom to combine software
and content in a production, without the need to con-
sider the nature of DCC. Second, thanks to content-type
driven execution, the video and animation DCCs are
dynamically associated with the respective companion
DCCs, which will show their content in the screen. At
a first glance, this may seem similar to the mechanism
used by software plug-ins to display videos and anima-
tions inside a web browser. However, plug-ins work in-
side the browser as isolated routines; unlike DCCs, they
do not expose explicit interfaces to be connected with
other content objects of a web document. In some cases,

418 A. Santanchè et al.

Fig. 9 Two versions of a
mathematics educational
project using specialized
components

software development experts can use script routines in-
side web pages (e.g., Javascript routines) to interact with
plug-ins, but this procedure involves hard programming
and is limited to the plug-in predefined functionalities.
A companion DCC, on the other hand, can be tailored
to each content-type, exposing a specific interface.

This key difference between DCCs and software plug-
ins/active document components is related to the way
they are associated with the content. Figure 8 presents an
example of this distinction. Consider a variation of the
application illustrated in Fig. 7, where the author added
another button DCC directly connected to the video and
animation DCCs. The role of this button is to request
to the video and animation DCCs to advance just one
frame at a time. Suppose the author wants to implement
the same presentation using two other approaches: (a)
an HTML page referring to the animation and the video
files, which will be submitted to a web browser contain-
ing plug-ins to deal with animation and video and (b) a
text document embedding the animation and the video
files, in a text processor that can access active document
components to deal with animation and video.

Figure 8 shows solutions (a) and (b) at execution time.
Solution (c) uses a companion DCC and is divided into
design time and execution time. At design time, process
DCCs are directly connected to passive DCCs. At exe-
cution time, companion DCCs are dynamically invoked
to access the passive DCCs, i.e., authors do not need to
concern themselves with these execution time details.
Dashed arrows show connections that appear at execu-
tion time, based on content-type driven execution.

Software plug-ins and active document components
are based on a connection architecture where the plug-
ins/components are attached to a host system. In the
companion DCC approach, each companion can be con-
nected with any other component that has a compati-
ble interface. As shown in Fig. 8, software plug-ins and
active document components approaches adopt a star
connection architecture, while the companion DCCs

approach uses a network connection architecture. The
DCC connection architecture enables the author to con-
nect, for example, the animation and video handler
DCCs with other DCCs, to provide synchronization. In
the architectures of software plug-ins and active docu-
ment components, this will require specialized program-
ming from software development specialists. The DCC
connection architecture provides content-type driven
execution support without the need of a central module,
and can be explored to create distributed compositions.

8.3 Composing higher-level components

Section 8.2 gave an example of authoring and interact-
ing with a simple production. This section discusses how
to create productions from composition of others.

Figure 9 shows a physics project, whose purpose is
to display how the values resulting from the kinemat-
ics function f(t) = S0+V.t affects the movement of
a ball. Figure 9a shows a composition that represents
the equation 1+40.t that will animate a ball (passive
DCC). The execution of this composition works as fol-
lows. Again, a switch DCC starts the clock. The clock
sends regular messages to DCCs labeled by “S0”, “V”
and “t”. The “t” DCC is a counter, which increments
its value and dispatches this value as a message to the
“V.t” DCC. The “V” and “S0” DCCs are constants, and
dispatch their values to the “V.t” and “S0+V.t” DCCs,
respectively. The “V.t” DCC multiplies the values re-
ceived and dispatches the result to the “S0+V.t” DCC,
which sums the received values. Finally, the values of
“S0+V.t” are dispatched to the ball DCC, whose po-
sition is defined by the received value. Authors (here,
school children) can change clock properties, coeffi-
cient values and even operations (e.g., S0-V.t). The
net result is to allow the children to experiment with
equations.

Figure 9b shows another version of the same pro-
ject, where the ball position is calculated by a compo-

User-author centered multimedia building blocks 419

nent, labeled with “S”, previously built and stored in the
DCC repository. Again, authors can edit this component
properties. This “S” component has a property named
function, which contains the mathematical expres-
sion used to calculate the component’s output value,
based on an input value. The expression is displayed at
the bottom of the component (1+40*t). The contrast
between these two versions illustrates that fine-grained
components give the end-user more control in applica-
tion development than coarse-grained ones.

We can thus consider two extremes of flexibility: in
one, the author combines and customizes existing com-
ponents using DCC interfaces; at the other, a developer
creates a component by writing a program code, and the
author cannot modify the program code. Assembling
fine-grained components to devise a solution lies some-
where in between [22]. Since this assembly can produce a
higher-level component, authors can produce and share
their components without writing program code.

The DCC model enables the creation of higher level
components via composition of lower level components.
This example shows that user-author collaboration is not
restricted to non-executable content, but also to soft-
ware, using a single mechanism and environment. In
contrast, complex digital object initiatives accept some
kinds of scripts attached to content. However, these
strategies: (1) do not have suitable mechanisms to reuse
the script code and adapt it to new contexts, since they
do not define software reuse strategies, like those used
by software components and DCCs and (2) have con-
straints on script expressiveness, e.g., MPEG-21 DIMs.

8.4 Breaking barriers: content and software

Our last example concerns a traditional question in com-
puter graphics animation. When authors want to move
elements in animations they have two possible ways: (1)
“manually” define the element position in each frame
and (2) produce a software routine to calculate the ele-
ment position for each frame.

The three compositions shown in Fig. 10 illustrate this
question. The goal is the same as the one illustrated in
Fig. 9, to animate a ball. The solution at the bottom of
Fig. 10c is the same as the one used in the cell examples
(Fig. 7). The counter will prompt the animation, using
the frames depicted on the bottom right.

In the other two solutions, Fig. 10a, b, a spreadsheet
DCC, fed by the counter, will direct the ball’s movement,
computing the function 1+40.t. The counter updates t
(cell B4) and the result (cell B5) sends a message to the
ball DCC, updating the ball’s position. In Fig. 10b, the
spreadsheet DCC encapsulates a set of (t, x) position

values. Every time the counter updates t (column A),
the x-value (column B) indicates the ball’s new position.
From an observer’s point of view, all three animations
are identical, moving the ball to the right.

Compositions 10a, b use a spreadsheet, but for differ-
ent purposes. In the first case, the spreadsheet is used to
compute a function, and thus acts like a process DCC.
In the second case, it contains a list of states (positions)
for the ball, and acts like a passive DCC. Depending on
the solution, the same artifact (spreadsheet) can have
passive content as well as executable routines. This kind
of situation can be handled neither by process-centric
nor by content-centric approaches. Finally, the compo-
sition of Fig. 10c shows that “passive” digital content can
replace program code.

This final example shows that, using the DCC model
and infrastructure, authors do not need to concern them-
selves with whether they are connecting software or
content pieces. They work in a higher level of abstrac-
tion, which is driven by the meaning conferred to each
artifact.

9 Concluding remarks

Our work presented an user-author centered multime-
dia building block in a scenario where the gap between
the roles of author and end-user is being closed.

It combines the support to users’ ease of use to the
author’s need for content adaptation, share and reuse.
Our work is based on the notion of DCC. It involves
both content and software reuse, adopting a model that
unifies advances in content-centric and process-centric
approaches. On the one side, it takes advantage of the
“interface as functionality abstraction” paradigm of the
software component approach to provide content with
functionality description. On the other hand, it brings
results of complex digital object research into the field
of software sharing and reuse. This model is being used
to implement content compositions in several domains
within our DCC composition and discovery framework,
e.g., geographic data management [28].

The main contributions of this paper are: (1) the dis-
cussion and elaboration of the main characteristics that
qualify DCC as a user-author centered building block
in the multimedia context; (2) the analysis of the notion
of content-type driven execution, under different guises
(e.g., software frameworks, plug-ins and active docu-
ment components), thereby unifying their study under
a single set of criteria and (3) the application of content-
type driven execution to multimedia user-authoring, in
which a given artifact “searches for” appropriate soft-
ware to execute it, based on a taxonomic ontology.

420 A. Santanchè et al.

Fig. 10 Animation of a ball: three alternatives

Besides the strategies presented in the paper, the
model is designed to accept other kinds of composition.
In particular, we are working to enable the use of work-
flows to describe a process [20]. Ongoing work involves
version control support for DCCs and DCC composi-
tions; the management of distributed update and align-
ment of the framework’s ontologies.

Acknowledgements This paper was partially supported by grants
from CNPq, CAPES, FAPESP and UNIFACS and CNPq projects
WebMaps and Agroflow, as well as Microsoft WeBios e-science
project. We also thank Maria Cecília Baranauskas for her insight-
ful comments.

References

1. ADL: Sharable content object reference model (SCORM)
2004—overview, 2nd edn. www.adlnet.org/screens/shares/
dsp_displayfile.cfm?fileid=992, accessed on 11/2004 (2004)

2. Alonso, G., et al.: Web Services—Concepts, Architectures and
Applications. Springer, Berlin Heidelberg New York (2004)

3. Apple Computer Inc.: OpenDoc Programmer’s Guide for the
Mac OS. Apple Press (1996)

4. Bekaert, J., De Kooning, E., Van de Walle, R.: Packaging mod-
els for the storage and distribution of complex digital objects
in archival information systems: a review of MPEG-21 DID
principles. Multimedia Syst. 10(4), 286–301 (2005)

5. Bolour, A.: Notes on the eclipse plug-in architecture. www.
eclipse.org/articles/Article-Plug-in-architec-
ture/plugin_architecture.html, accessed on 06/2005 (2003)

6. Brockschmidt, K.: Inside OLE, 2nd edn. Microsoft Press
(1995)

7. Bulterman, D., Hardman, L.: Structured multimedia author-
ing. ACM Trans. Multimedia Comput. Commun. Appl. 1(1),
89–109 (2005)

8. Burnett, I., Davis, S., Drury, G.: MPEG-21 digital item dec-
laration and identification-principles and compression. IEEE
Trans. Multimedia 7(3), 400–407 (2005)

9. Burnett, I., Van de Walle, R., Hill, K., Bormans, J., Pereira,
F.: MPEG-21: goals and achievements. Multimedia 10, 60–70
(2003)

10. CCSDS: Reference model for an open archival information
system (OAIS)—blue book. Technical Report CCSDS
650.0-B-1. www.ccsds.org/CCSDS/documents/650x0b1.pdf,
accessed on 11/2004 (2002)

11. Chinnici, R., et al.: Web services description language
(WSDL) version 2.0 part 1: core language—W3C work-
ing draft, 3 August 2004. www.w3.org/TR/2004/WD-wsdl20-
20040803/, accessed on 11/2004 (2004)

12. Cullot, N., Parent, C., Spaccapietra, S., Vangenot, C.: Ontolo-
gies: a contribution to the DL/DB debate. In: Proceedings of
the 1st International Workshop on the Semantic Web and Da-
tabases, 29th International Conference on Very Large Data
Bases, pp. 109–129 (2003)

13. Emmerich, W.: Distributed component technologies and their
software engineering implications. In: ICSE ’02, Proceedngs
of the 24th International Conference on Software Engineer-
ing, pp. 537–546. ACM Press (2002)

14. Hopkins, J.: Component primer. Commun. ACM 43(10),
27–30 (2000)

User-author centered multimedia building blocks 421

15. IEEE L.T.S.C.: Draft standard for learning object meta-
data—IEEE 1484.12.1-2002. http://ltsc.ieee.org/doc/wg12/
LOM_1484_12_1_v1_Final_Draft.pdf, access on 10/2003
(2002)

16. ISO/IEC: ISO/IEC TR 2100-1—information technology—
multimedia framework (MPEG-21), part 1: vision, technol-
ogies and strategy, 2nd edn. Technical Report (2004)

17. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2),
131–183 (1992)

18. Martin, D., et al.: OWL-S: semantic markup for web ser-
vices. www.daml.org/services/owl-s/1.1/overview/, accessed
on 12/2004 (2004)

19. McDonald, W.A., Hyde, J., Montgomery, A.: CMI
guidelines for interoperability AICC. www.aicc.org/
docs/tech/cmi001v4.pdf, accessed on 11/2004 (2004)

20. Medeiros, C.B., Perez-Alcazar, J., Digiampietri, L., Pastorello
Jr, G.Z., Santanchè, A., Torres, R.S., Madeira, E., Bacarin,
E.: WOODS and the web: annotating and reusing scientific
workflows. SIGMOD Record 34(3), 18–23 (2005)

21. Mitra, N.: SOAP version 1.2, part 0: primer—W3C rec-
ommendation 24 June. www.w3.org/TR/2003/REC-soap12-
part0-20030624/, accessed on 12/2004 (2003)

22. Mrch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y.,
Wulf, V.: Component-based technologies for end-user devel-
opment. Commun. ACM 47(9), 59–62 (2004)

23. Nanard, M., Nanard, J., King, P.: IUHM: a hypermedia-based
model for integrating open services, data and metadata. In:
HYPERTEXT ’03: Proceedings of the 14th ACM Confer-
ence on Hypertext and Hypermedia, New York, pp. 128–137
(2003)

24. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson,
R.W., Musen, M.A.: Creating semantic web contents with
protégé-2000. IEEE Intell Syst 16(2), 60–71 (2001)

25. OMG: Reusable asset specification—final adopted speci-
fication. http://www.omg.org/cgi-bin/doc?ptc/2004-06-06, ac-
cessed on 10/2004 (2004)

26. Potts, R.: Mozilla developer documentation—NG layout
embedding APIs. www.mozilla.org/newlayout/doc/webwid-
get.html, accessed on 06/2005 (1998)

27. Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A., Phil-
lips, J., Jackiw, N., Suthers, D.: Developing educational soft-
ware components. Computer 32(9), 50–58 (1999)

28. Santanchè, A., Medeiros, C.B.: Geographic digital content
components. In: Proceeings of VI Brazilian Symposium on
GeoInformatics, pp. 281–290 (2004)

29. Santanchè, A., Medeiros, C.B.: Managing dynamic reposito-
ries for digital content components. In: Current Trends in
Database Technology—EDBT 2004 Workshops, vol. LNCS
3268, pp. 66–77 (2004)

30. Santanchè, A., Medeiros, C.B.: Self describing components:
searching for digital artifacts on the web. In: Proceedngs of
XX Brazilian Symposium on Databases, pp. 10–24 (2005)

31. Santanchè, A., Teixeira, C.A.C.: Anima: promoting compo-
nent integration in the web (in Portuguese). In: Proceedings
of 7th Brasilian Symposium on Multimedia and Hypermedia
Systems, pp. 261–268 (2001).

32. Smith, M.K., Welty, C., McGuinness, D.L.: OWL web
ontology language guide—W3C recommendation 10 Feb-
ruary 2004. www.w3.org/TR/2004/REC-owl-guide-20040210/,
accessed on 11/2004 (2004)

33. Smythe, C., Jackl, A.: IMS content packaging informa-
tion model. Specification, IMS Global Learning Consortium,
Inc. www.imsglobal.org/content/packaging/cpv1p1p4/imscp_
infov1p1p4.html, accessed on 11/2004 (2004)

34. The Fedora Project team: Mellon Fedora Technical Specifica-
tion. www.fedora.info/documents/master-spec-12.20.02.pdf,
accessed on 12/2004 (2002)

35. The Library of Congress: METS: an overview & tuto-
rial. www.loc.gov/standards/mets/METSOverview.v2.html,
accessed on 11/2004 (2004)

36. UDDI Committee Specification: Uddi version 2.04 API spec-
ification. uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.htm, accessed on 06/2005 (2002)

37. Wang, X., DeMartini, T., Wragg, B., Paramasivam, M., Barlas,
C.: The MPEG-21 rights expression language and rights data
dictionary. IEEE Trans. Multimedia 7(3), 408–417 (2005)

	User-author centered multimedia building blocks
	Abstract
	Introduction
	Tradeoff between ease of use and reusability
	Content nature and application domain barriers
	Related work
	Process-centric content-centric development
	Software components (process-centric approach)
	Complex digital objects (content-centric approach)
	Content-type driven execution
	Software frameworks
	Software plug-ins
	Active document components
	Requirements for user-author multimedia building blocks
	Breaking barriers between content- and process-centric development
	Providing a unified abstraction: potential provided functionality
	Exposing a homogeneous interface
	Supporting content-type driven execution
	A very brief overview of DCC
	Content-type driven authoring
	DCC content-type driven execution
	Authoring DCC multimedia artifacts
	DCC retrieval mechanism
	Finding/retrieving a DCC
	Exploiting the DCC type ontology
	Implementation aspects
	Meeting the requirements
	How DCCs meet the requirements
	Swapping content and program code
	Composing higher-level components
	Breaking barriers: content and software
	Concluding remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

