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Abstract. Work on multiscale issues presents countless challengegshtdve
been long attacked by GlScience researchers. Most resthisr &oncentrate
on modeling or on data structures/database aspects. ®okitgo either to-
wards generalization (and/or virtualization of distinctades) or towards link-
ing entities of interest across scales. However, reseagcBeldom take into
account the fact that multiscale scenarios are increasirginstructed coop-
eratively, and require distinct perspectives of the worlcheTcombination of
multiscale and multiple perspectives per scale consstutbat we calimulti-
focusresearch. This paper presents our solution to these isdubsilds upon
a specific database version model — the multiversion MVBD €lwhas already
been successfully implemented in several geospatial dospaeing extended
here to support multi-focus research.

1. Introduction

Geological societies, all over the world, are adopting greit”Anthropocene” to desig-
nate a new geological epoch whose start coincides with thadtof human activities on
the Earth’s ecosystems and their dynamics.

The discussion on the Anthropocene shows a trend in mudiplisary research
directly concerned with the issues raised in this paper ensisits increasingly need to
integrate results of research conducted under multipledod scales. Anthropocenic
research requires considering multiscale interactiongs-ia climate change studies, this
may vary from the small granularity (e.g., a human) to the nmame (e.g., the Earth).
To exploit the evolution and interaction of such complexteyss, research groups (and
disciplines) must consider distinct entities of study,mitbed to particular time and space
dynamics. Multiscale research is not restricted to gedgcaphenomena; this paper,
however, will consider only two kinds of scales — temporal geographic.

For such scenarios, one can no longer consider data hetetibgalone, but also
the heterogeneity of processes that occur within and asaadss.This is complicated by
the following: (a) there are distinct fields of knowledgeahxed (hence different data
collection methodologies, models and practices); andh®)study of complex systems
requires complementary ways of analyzing a problem, lagpkihevidence at distinct
aggregation/generalization levels mailti-focusapproach. Since it is impossible to work
at all scales and representations at once, each group atistsewill focus on a given
(sub)problem and try to understand its complex processessét of analyses performed
under a given focus has implications on others. From nowtas paper will use the term
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"multi-focus” to refer to these problems, where a "focusaiperspective of a problem,
including data (and data representations), but also maglednalysis and dynamics of the
spatio-temporal entities of interest, within and acrosdesc

This scenario opens a wide range of new problems to be igatsd
[Longo et al. 2012]. This paper has chosen to concentrathefotiowing challenges:

e How can GlIScience researchers provide support to resdaactlstcharacterized
by the need to analyze data, models, processes and evenmnssirattpace and
time scales, and represented at varying levels of detail?

e How to keep track of events as they percolate bottom-updtmpa and across
space, time and foci of interest?

e How to provide adequate management of these multi-focusi-expertise sce-
narios and their evolution?

A good example of multi-focus Anthropocene research in agigahic context is
multimodal transportation. At a given granularity, engireare interested in individual
vehicles, for which data are collected (e.qg., itinerarie§ther experts may store and
guery trajectories, and associate semantics to stops. Agheehlevel, traffic planners
study trends - the individual vehicles disappear and théienof study become clusters
of vehicles and/or traffic flow — e.g., [Medeiros et al. 201@#. complementary focus
comes from climate research (e.g., floods cause major tidifftarbances) or political
upheavals. This can be generalized to several interactagugarity levels. In spite of
advances in transportation research, e.g., in moving tshjeere are very few results in
representation and interaction of multiple foci.

Environmental changes present a different set of chalketmenulti-focus work.
Studies consider a hierarchy of ecological levels, from mamity to ecosystem, to land-
scape, to a whole biome. Though ecosystems are often coedidesed systems for
study purposes, the same does not apply to landscapegheygcan include rivers that
run into (or out of) boundariésA landscape contains multiple habitats, vegetation types
land uses, which are inter-related by many spatio-tempetationships. And a study
may focus on vegetation patches, or in insect-plant intenas.

In agriculture — the case study in this paper — the focus sdrim sensors to
satellites, analyzed under land use practices or cromstemd lifecycles. Each of the
disciplines involved has its own work practices, which rieg@analyzing data at several
granularity levels; when all disciplines and data sets atgqgether, one is faced with a
highly heterogeneous set of data and processes that vapaoa and time, and for which
there are no consensual storage, indexation, analysiswalization procedures.

Previous work of ours in traffic management, agriculture indiversity brought
to light the limitations of present research on spatio-terapinformation management,
when it comes to supporting multi-focus studies. As will leers, our work combines
the main solution trends found in the literature, handlimghbdata and processes in a
homogeneous way, expanding the paradigmrmattiversion databasesinder the model
of [Cellary and Jomier 1990]. We have recently extended itujgpsrt multiple spatial
scales [Longo et al. 2012], and here explore multiple fodi iaeractions across scales.

1Similar to studies in traffic in and out of a region...



2. Related work

Research on multiscale data management involves stateafrt work in countless
fields. As pointed out in, for instance, [Spaccapietra e2@02], multiple cartographic
representations are just one example of the need for mapaguttiple scales. In cli-
mate change studies, or agriculture, for instance, a ceradte amount of the data are
geospatial — e.g., human factors.

Present research on multiscale issues has several lonisaith this broader sce-
nario. To start with, it is most frequently limited to veatdrdata, whereas many domains,
including agriculture, require other kinds of represantatind modeling (including raster
data) [Leibovicia and Jackson 2011]. Also, it is essentiedincerned with the represen-
tation of geographic entities (in special at the cartogm@pgvel), while other kinds of
requirements must also be considered.

The example reported in [Benda et al. 2002], concerningineeecosystems, is
representative of challenges to be faced and which are hadsby research on spatio-
temporal data management. It shows that such ecosysteoiganamong others, anal-
ysis of spatio-temporal data and processes on human &diyé.g., urbanization, agri-
cultural practices), on hydrologic properties (e.g., jiation, flow routing), and on the
environment (e.g., vegetation and aquatic fauna). Thisirim requires cooperation of (at
least) hydrologists, geomorphologists, social scientisid ecologists.

Literature on the management of spatio-temporal data amckepses at multiple
scales concentrates on two directions: (a) generalizatigorithms, which are mostly
geared towards handling multiple spatial scales via algmic processes; and (b) multi-
representation databases (MRDBSs), which are geared towatdsrchnagement at mul-
tiple spatial scales. These two approaches respectivetgsaond to Zhou and Jones’
[Zhou and Jones 2003] multi-representation spatial dattand linked multi-version
database&s Most solutions, nevertheless, concentrate on spatialpg'simots” at the same
time, and frequently do not consider evolution with time acds variation.

Generalization-based solutions rely on the constructiovirtual spatial scales
from a basic initial geographic scale - for instance, [Oasteand Stoter 2010] in their
model mention that managing scales require "zooming in amd, @perations usu-
ally associated with visualization (but not data managdjmemiere, as pointed out
by [Zhou and Jones 2003], scale and spatial resolution arallystreated as one sin-
gle concept. Generalization itself is far from being a sdlgebject. As stressed by
[Buttenfield et al. 2010], for instance, effective multisce¢presentation requires that the
algorithm to be applied be tuned to a given region, e.g., distdscape differences. Gen-
eralization solutions are more flexible than MRDBSs, but regjaiiore computing time.

While generalization approaches compute multiple virtiadless, approaches
based on data structures rely on managing stored data. MfSpnay vary from main-
taining separate databases (one for each scale) to using MRRBEtter concern data
structures to store and link different objects of severptesentation of the same entity
or phenomenon [Sarjakoski 2007]. They have been succhss#pbrted in, for instance,
urban planning, or in the aggregation of large amounts o$getial data and in cases that
applications require data in different levels of detail fBgom 2009, Gao et al. 2010,

2We point out that our definition ofersionis not the same as that of Zhou and Jones



Parent et al. 2009]. The multiple representation work of femom and Stoter 2010]
comments on the possibility of storing the most detaile@ datd computing other scales
via generalization. This presents the advantage of pregpoonsistency across scales
(since all except for a basis are computed), but multipledannot be considered.

The previous paragraphs discussed work that concentratspatial, and some-
times spatio-temporal isstiesSeveral authors have considered multiscale issues from a
conceptual formalization point of view, thus being able ¢one closer to our focus con-
cept. An example is [Spaccapietra et al. 2002], which carsidlassification and inher-
itance as useful conceptual constructs to conceive andgeanaltiple scales, including
multiple foci. The work of [Duce and Janowicz 2010] is comaat with multiple (hier-
archical) conceptualizations of the world, restricted gat&gl administrative boundaries
(e.g., the concept of rivers in Spain or in Germany). Whils thirelated to our problem
(as multi-focus studies also require multiple ontologié@s} restricted to ontology con-
struction. We, on the other hand, though also concernedmuitltiple conceptualizations
of geographic space, need to support many views at sevealsse e.g., a given entity,
for the same administrative boundary, may play distinaspand be present or not.

We point out that the work of [Parent et al. 2006] concernimg MADS model,
though centered on conceptual issues concerning spaeeatithperspective (which has
similar points with our focus concept), also covers implatagon issues in a spatio-
temporal database. Several implementation initiativeseported. However, a perspec-
tive (focus) does not encompass several scales, and thesdthnot concern themselves
with performance issues. Our extension to the MVBD approddtussed next, covers
all these points, and allows managing both materializedvardal data objects within
a single framework, encompassing both vector and rastar dat letting a focus cover
multiple spatial or temporal scales.

3. Case study

Let us briefly introduce our case study - agricultural mamiig. In this domain, phe-
nomena within a given region must be accompanied through. tData to be monitored
include, for instance, temperature, rainfall, but alsd s@nagement practices, and even
crop responses to such practices. More complex scenarnbige these factors with
economic, transportation, or cultural factors.

Data need to be gathered at several spatial and temporatsealg., from chem-
ical analysis on a farm’s crop every year, to sensor datayeM@minutes. Analyses are
conducted by distinct groups of experts, with multiple fe@gro-environmentalists will
look for impact on the environment, others will think of optzing yield, and so on.

We restrict ourselves to two data sources, satellite iméyegcally, one image
every 10 days) and ground sensors, abstracting detailseaacthal data being produced.
From a high level perspective, both kinds of sources givgimrio time series since
they periodically produce data that are stored together timiestamps. We point out
that these series are very heterogeneous. Sensor (streaas) data are being studied
under distinct research perspectives, in particular dassoh and summarization e.g.,

3The notion of scale, more often than not, is associated vpitial resolution, and time plays a sec-
ondary role.



[McGuire et al. 2011]. Some of these methods are specific donparing entire time
series, while others can work with subsequences. Satiefidges are seldom considered
under a time series perspective: data are collected leggently, values are not atomic,
and processing algorithms are totally different — researtisatellite image analysis is
conducted within remote sensing literature — e.qg., [Xagtal. 2006]. Our multi-focus
approach, however, can treat both kinds of data source hemoogly.

Satellite time series are usually adopted to provide l@mg¥tmonitoring, and to
predict yield; sensor time series are reserved for real timoeitoring. However, data
from both sources must be combined to provide adequate anmgt Such combinations
present many open problems. The standard, practical,i@olig to aggregate sensor
data temporally (usually producing averages over a peridon@), and then aggregate
them spatially. In the spatial aggregation, a local senstwaork becomes a point, whose
value is the average of the temporal averages of each sertbarmetwork. Next, Voronoi
polygons are constructed, in which the "content” of a polygothis global average value.
Finally, these polygons can be combined with the conteritssoimages. Joint time series
evolution is not considered. Our solution, as will be sedlowa solving these issues
within the database itself.

4. Solving anthropocenic issues using MVDBs

Our solution is based on the Multiversion Database (MVDB) alpdavhich will be
only introduced in an informal way. For more details the eyads referred to
[Cellary and Jomier 1990]. The solution is illustrated by sidering the monitoring of
a farm within a given region, for which time-evolving dateear(a) satellite images
(database object S); (b) the farm’s boundaries (databgsetd®), and (c) weather sta-
tions at several places in the region, with several sensals @atabase object G).

4.1. Introducing MVBD

Intuitively, a given real world entity can correspond to mastinct digital items express-
ing, for example, its alternative representations, orwapy its different states along time.
Each of these "expressions” will be treated in this work agsionof the object. Con-
sider the example illustrated in Figure 1. On the left, theme two identified database
objects: a satellite imag€¥j S) and a polygon to be superimposed on the ima&dpg (
P). delimiting the boundaries of the farm to be monitored.

As illustrated by the table on the right of the figure, bothealtig can change along
time, reflecting changes in the world, e.g., a new satehi@ge will be periodically pro-
vided, or the boundaries of the farm can change. For eachwa#d entity, instead of
considering that these are new database objects, suchasheaug be interpreted as many
versions of the same objécfThis object has a single, unique, identifier — called an Gibje
IdentifierQ d>.

A challenge when many interrelated objects have multiplesivas is how to
group them coherently. For example, since the satellitegemend the farm polygon
change along time, a given version of the satellite imaga ft@/05/2010 must be related
with a temporally compatible version of the farm polygon.isTis the central focus of

“Here, both raster and vector representations are supp@aeld VDB object is a database entity
50ids are artificial constructs. The actual disambiguatioanoobject in the world is not an issue here



the Multiversion Database (MVDB) model. It can handle mudtigersions of an arbi-
trary number of objects, which are organizeddamtabase versions - DBV# DBV is a
logical construct. It represents an entire, consisterdaluete constructed from a MVDB
which gathers together consistent versions of interrélatgects. Intuitively, it can be
interpreted as aomplex viewon a MVDB. However, as shall be seen, unlike standard
database views, DBVs are not constructed from queries.

QObjP
i

e Obj S

Figure 1. Practical scenario of a polygon over a satellite im age.

To handle the relation between an object and its versioasvibBV distinguishes
their identifications by using object and physical identffieespectively. Each object has
a single object identifierd d), which will be the same independently of its multiple
versions. Each version of this object, materialized in th@base by a digital item — e.g.,
an image, a polygon etc. — will receive a distinct physicabian identifierPVid. In the
example of Figure 1, there is a singled for each object — satellite imagél§j S) and
the farm boundarie<dpj P). Every time a new image or a new polygon is stored, it will
receive its owrPVi d.

DBVs are the means to manage the relationship betweén dn(say,S) and a
givenPVi d (of S). Figure 2 introduces a graphical illustration of the relaship among
these three elementBBV, G d andPVi d. In the middle there are two DBVs identified
by DBVi ds —DBV 1 andDBV 1. 1 —and represented as planes containing logical slices
(the "views”) of the MVDB. The figure shows that each DBV has ia@ns of P andS,
but each DBV is monoversion (i.e., it cannot contain two défe versions of an object).
The right part of the figure shows the physical storage, incvtihere are two physical
versions ofS (identified byPh1 andPh9), and just one version d.

DBV 1 relatesS with a specific satellite image arfl with a specific polygon,
which form together a consistent version of the world. Netitat here nothing is being
said about temporal or spatial scales. For instance, theatedlite images can correspond
to images obtained by different sensors aboard the sanmbtegieg., heat sensor, water
sensor), and thus have the same timestamp. Alternativedy, ¢an be images taken in
different days. The role of the DBV is to gather together cotilypaversions of its objects,
under whichever perspective applies.

Since DBVs are logical constructs, each object in a DBV hasatslogical iden-
tifier. Figure 2 shows on the left an alternative tabular @gpntation, in whiclbBVi ds
identify rows andd ds identify columns. Each paiDBVi d, G d) identifies the logical
version of an object and is related to a sinBM d, e.g.,(DBV1,00jS)—Phl. The
asterisk in cellPBV 1. 1, Obj P) means that the state of the object did not change
from DBV 1 to DBV 1.1, and therefore it will address the same physical identi®ter
5.
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Figure 2. The relationship between DBVs, logical and physic al identifiers.

4.2. DBV Evolution and Traceability

DBVs can be constructed from scratch or from other DBVEhe identifier of a DBV
(DBVid) indicates its derivation history. This is alignedttte idea that versions are not
necessarily related to time changes, affording alteraatiriations of the same source, as
well as multiple foci — see section 5.

The distinction between logical and physical identificaids explored by an
MVDB to provide storage efficiency. In most of the derivaspronly a partial set of
objects will change in a new derived DBV. In this case, the MVDB& a strategy in
which it stores only the differences from the previous \@rsiReturning to the example
presented in Figure 2 on the left tabl@BV 1. 1 is derived fromDBV 1, by changing
the state ofCbj S. Thus, a newPVi d is stored for it, but the state @bj P has not
changed — no new polygon is stored, and thus there is ndPvewl.

The evolution of a DBV is recorded in a derivation tree of DBVid® retrieve
the properPVi d for each (virtual) object in a DBV, the MVDB adopts two straesy
provided and inferred referendeshrough navigation in the tree. This allows keeping
track of real world evolution. We take advantage of theseepts in our extension of the
MVDB model, implemented to support multiple spatial scdlesgo et al. 2012]. First,
we create one tree per spatial scales, and all trees growhainét fogether. Second, the
notion of object id is extended to associate the id with tladesim which that object exists
- (Oid, Scaleid). This paper extends this proposal in twedations: (1) we generalize
the notion of spatial scale to that of focus, where a giveniaipar temporal scale can
accomodate multiple foci, and the evolution of these foc¢himia single derivation tree;
(2) we provide a detailed case study to illustrate the iraisrof our solution.

5. From Multiversion to Multi-focus

This paper extends the MVDB model to support the several flagbmulti-focus. This
implies in synthesizing the multiple foci which can be apglto objects — scales, rep-
resentations etc. — as specializations of versions. Figulfastrates an example of this
extension. There are three perspectives within the logieal - see the Figure.

In the Physical perspective, there are three objects — twgores of satellite im-
age S (with identifier®?h1 andPh2), and one version of a set of sensor data streams,
corresponding to a set of weather stations G — global idenEfi7). Satellite image and

DBV derivation trees, part of the model, will not be preserere.
"For the logical versionBV 1.1, QObj P), the reference will be inferred by traversing the chain of
derivations.



sensor data are to be combined in Applications, which capandess DBVs (and not the
database). So, several DBVs are built, each of which correBpg to a distinct focus.
The arrows between DBV objects and stored objects appearawvbean object is copied
into a DBV, without any additional computation. In the figutiee DBV corresponding
to Focus 1 makes available the satellite image verBloh and all data from all weather
stations G. The DBV corresponding to Focus 2 makes availhblsdtellite image version
Ph2, andcomputes set of Voronoi polygons from the weather station data stseathe
resulting polygon is displayed in the figure with a dotte@ lio show that it is not directly
copied from the database, but is computed from it. FinalBVB-ocus3 contains only
one image, which has been computed from DBV-Focus2.

Applications access these three DBVs in the following way.pligation Scale
A is built from DBV-Focusz2; it corresponds to a particular spaemporal focus of the
database, in which the image is directly extracted from tB¥,[and a set of Voronoi
polygons is computed from the DBV. Application Scale B is bfriim DBV-Focusl; it
corresponds to another spatio-temporal focus of the dséaba which the image and
the polygons are directly copied from the DBV. The third DBV & being used by any
application.

Application Logical

S
(satellite image)--.|.

(ground sensors)

Figure 3. Handling multiple foci.

Figure 3 reflects the following facts. First, DBVs can confaist objects that are
in the database, or computed objects, or a mix of both. Se@pmudications constructed
on top of the DBVs can use exactly the same objects (the one ale 8cdirectly uses
the same contents of DBV-Focus2), but also compute othectsiijine polygon on Scale
B, computed from DBV-Focusl). Third, DBVs now can be interedddy many kinds of
derivation operations.

In our case study, each application corresponds to oneatpainle (scale B
smaller than scale A), and sensor data are preprocessed &itthe application, or by
the DBMS, to allow combination of these distinct data sourd@BV-Focus 3 is an ex-
ample of at least three possible scenarios: in one, S camesgo an even smaller spatial
scale, for which sensor data do no longer make sense; inem&tls the result of combi-
nation of satellite image and sensor data; in the third, doced is in some characteristics
of the satellite image, and sensor data can be ignored faguiposes of that DBV.

In order to support these kinds of DBV, the classical MVDB niadgs extended:
(i) we added more types of relationships between DBVs; (ii)imieoduced the notion



of scale to be part of an OID. In the classical MVDB the onhatelnship between two

DBVs is the derivation relationship, explained in the pregsection. Our multi-focus

approach requires a wider set of relationships. Therefww, the relationship between
two DBVs becomes typed: generalization, aggregation ete ffping system is exten-

sible, affording new types. This requires that new infoliorabe stored concerning each
DBV, and that the semantics of each object be stored alongisedebject, e.g., using

ontologies.

Returning to our example in Figure 3 consider an applicati@t will access
the contents ofS in DBV- Focus3. Since there is no explicit reference to it in the
DBV- Focus?2, the only information is that the state of S in the third fobas been de-
rived in some kind of relationship with the state of S in thess® DBV. Let us consider
that this is a generalization relationship, i.e., the stdit® in the third DBV is a carto-
graphic generalization of the state of S in the DBV-Focus2orhtter to use this logical
version of S in an application, the construction of DBV-F&usll require an algorithm
that will: (1) verify that the type of the relationship is gealization; therefores must be
transformed to the proper scale; (2) check the semanti8s\warifying that it is a satellite
image, and therefore generalization concerns image msimggsnd scaling.

6. Conclusions and ongoing work

This paper presents our approach to handling multi-focablpms, for geospatial data,
based on adapting the MDBV (multiversion database) apprttabandle not only mul-
tiple scales, but multiple foci at each scale. Most appreach the geospatial field con-
centrate on the management of multiple spatial or tempaedés (either by computing
additional scales via generalization, or keeping trackliod@ales within a database via
link mechanisms). Our solution encompasses both kindsgoagh in a single environ-
ment, where aad hocworking scenario (the focus) can be built either by gettoggther
consistent spatio-temporal versions of geospatial estitr by computing the appropriate
states, or a combination of both. Since a DBV can be seen asstant view of the mul-
tiversion database, our approach also supports constnuatiany kind of arbitrary work
scenarios, thereby allowing cooperative work. Moreoverjvation trees allow keeping
track of the evolution of objects as they are updated, appedisappear across scales.

Our ongoing work follows several directions. One of thenludes domain on-
tologies, to support communication among experts andaotems across levels and foci.
We are also concerned with formalizing constraints acrd3¥$Xand thus across scales
and foci).
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