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CAMPINAS

2012

i



ii



Universidade Estadual de Campinas

Instituto de Computação

Alan Massaru Nakai

“Novas Técnicas de Distribuição de Carga para

Servidores Web Geograficamente Distribúıdos”
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Resumo

A distribuição de carga é um problema intŕınseco a sistemas distribúıdos. Esta tese aborda

este problema no contexto de servidores web geograficamente distribúıdos. A replicação

de servidores web em datacenters distribúıdos geograficamente provê tolerância a falhas

e a possibilidade de fornecer melhores tempos de resposta aos clientes. Uma questão

chave em cenários como este é a eficiência da solução de distribuição de carga empregada

para dividir a carga do sistema entre as réplicas do servidor. A distribuição de carga

permite que os provedores façam melhor uso dos seus recursos, amenizando a necessidade

de provisão extra e ajudando a tolerar picos de carga até que o sistema seja ajustado.

O objetivo deste trabalho foi estudar e propor novas soluções de distribuição de carga

para servidores web geograficamente distribúıdos. Para isso, foram implementadas duas

ferramentas para apoiar a análise e o desenvolvimento de novas soluções, uma plataforma

de testes constrúıda sobre a implementação real de um serviço web e um software de

simulação baseado em um modelo reaĺıstico de geração de carga para web. As principais

contribuições desta tese são as propostas de quatro novas soluções de distribuição de carga

que abrangem três diferentes tipos: soluções baseadas em DNS, baseadas em clientes e

baseadas em servidores.
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Abstract

Load balancing is a problem that is intrinsic to distributed systems. In this thesis, we

study this problem in the context of geographically distributed web servers. The replica-

tion of web servers on geographically distributed datacenters allows the service provider

to tolerate failures and to improve the response times perceived by clients. A key issue for

achieving good performance in such a deployment is the efficiency of the load balancing so-

lution used to distribute client requests among the replicated servers. The load balancing

allows providers to make better use of their resources, soften the need for over-provision,

and help tolerate abrupt load peaks until the system can be adjusted. The objective of

this work was to study and propose load balancing solutions for geographically distributed

web servers. In order to accomplish this objective, we have implemented two tools that

support the analysis and development of load balancing solutions, a testbed that was built

on top of a real web service implementation, and a simulation software that is based on

a realistic model for web load generation. The main contributions of this thesis are the

proposals of four new load balancing solutions that comprehend three types: DNS-based,

client-based, and server-based.
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Caṕıtulo 1

Introdução

Esta tese aborda um problema intŕınseco aos sistemas distribúıdos: a distribuição de

carga entre processadores paralelos. Aqui, este problema é estudado no contexto de

serviços acessados por meio da web, cuja importância é sabidamente crescente. Cada vez

mais companhias realizam porções significativas de seus negócios online. Cresce também

a oferta de serviços pela web e, mais importante que isso, aumenta o número de consu-

midores para esses serviços.

Neste contexto, aumenta a demanda por soluções para prover alta disponibilidade de

serviços web. Um motivo evidente para isto é o fator financeiro [97]. A indisponibilidade

dos serviços pode gerar descontentamento de clientes, influenciando negativamente na

imagem da companhia e, consequentemente, gerando perdas de receita. Além disso, a

falta de disponibilidade do sistema em aplicações cŕıticas, como aplicações militares e da

medicina, pode ter consequências catastróficas, levando risco ao bem estar humano.

Uma solução comum para o aumento da disponibilidade de um serviço web é a adição

de redundância ao sistema, via replicação dos servidores. Esta solução aumenta a pro-

babilidade de que um cliente possa conectar-se a um servidor mesmo na presença de

falhas parciais. Além disso, a replicação potencializa a escalabilidade do serviço web,

diminuindo a chance de sobrecargas. Existem várias formas para replicar uma aplicação

web pela internet, sendo por meio da replicação total da base de dados [41, 43, 78] ou

por mecanismos de caching [73, 84]. A melhor solução depende da carga de trabalho da

aplicação e do ńıvel de consistência necessário entre as réplicas. Atualmente, serviços de

CDN (Content Delivery Network) permitem que companhias repliquem seu conteúdo em

centenas de servidores web espalhados pelo mundo. Mesmo pequenas e médias empresas

podem implantar seus serviços em datacenters geograficamente distribúıdos contratando

serviços de computação em nuvem [44], como Amazon, Windows Azure e Google Apps.

Independente da forma como a aplicação é replicada, um problema essencial para este

tipo de abordagem é a distribuição da carga entre as réplicas do servidor web [47]. A

1



2 Caṕıtulo 1. Introdução

solução de distribuição de carga permite que os provedores de serviços façam melhor uso

de seus recursos de hardware e diminuam a necessidade de provisão extra de recursos.

Além disso, mesmo quando os recursos de hardware são elásticos, a distribuição de carga

pode auxiliar a tolerar picos de carga até que o sistema seja ajustado. Como reflexo da

importância deste tema, uma grande quantidade de artigos acadêmicos foram publica-

dos sobre o assunto (ver Seção 2.1) e grandes companhias que atuam na internet, como

Microsoft, IBM e Akamai, têm patenteado diversas soluções para distribuição de carga

[10, 21, 29, 49, 52, 87].

De forma geral, as técnicas para distribuição de carga para servidores web replicados

encontradas na literatura podem ser divididas em duas categorias: técnicas para servidores

web geograficamente distribúıdos e técnicas para servidores web replicados e hospedados

em aglomerados. Incluem-se na primeira categoria as soluções aplicáveis a servidores web

distribúıdos nos quais todo nó replicado possui um endereço IP viśıvel aos clientes. A

segunda categoria engloba as abordagens aplicáveis aos servidores web distribúıdos cujos

nós compõem um aglomerado, apresentando um único endereço IP viśıvel, geralmente

atribúıdo ao roteador de borda do aglomerado. Esta tese foca a primeira categoria.

O problema da distribuição de carga entre servidores web geograficamente distribúıdos

consiste em ligar dinamicamente o cliente do serviço web com a réplica mais apropriada

do servidor. É importante notar que, no contexto deste problema, é indiferente se a

réplica é um único computador ou um datacenter com milhares de servidores. A réplica

mais apropriada pode ser escolhida de acordo com a necessidade de distribuir a carga

total do sistema entre as réplicas dispońıveis e de prover menor tempo de resposta para o

cliente [47]. A grande dificuldade em tratar este problema é lidar com as altas latências

encontradas na internet, que podem afetar os tempos de resposta percebidos pelos clientes

e dificultam a troca de informações de controle. A partir daqui, para facilitar a leitura, o

termo “distribuição de carga” será utilizado para referenciar o problema da distribuição

de carga para servidores web geograficamente distribúıdos.

De acordo com Sivasubramanian et al. [85], uma solução para o problema de distri-

buição de carga é composta por uma poĺıtica de distribuição de carga e por um mecanismo

de distribuição de carga. A poĺıtica de distribuição de carga define como selecionar uma

réplica do servidor web para a qual atribuir uma requisição do cliente. A poĺıtica é basi-

camente um algoritmo invocado quando o cliente realiza uma requisição ao serviço web.

Um exemplo simples de poĺıtica de distribuição é a estratégia de rotação (Round Robin -

RR), no qual o DNS autoridade retorna um endereço IP, de uma lista de rotativa, a cada

requisição recebida [51].

A poĺıtica de distribuição de carga pode utilizar diferentes informações na tomada de

decisões, como [24, 85]:

• Informações dos servidores: tamanho de fila de requisições, histórico de utilização,
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medidas de carga (p.ex. uso de CPU, memória, disco e rede) e capacidade de

processamento;

• Informações dos clientes: distância entre clientes e servidores, carga gerada pelos

clientes e latência sentida pelos clientes.

O mecanismo de distribuição de carga é o meio pelo qual os clientes são dinamica-

mente ligados à réplica selecionada pela poĺıtica de distribuição de carga. Os mecanismos

de distribuição de carga podem ser divididos em quatro tipos [16], dependendo em que

parte do sistema a poĺıtica é executada: (i) mecanismos de distribuição via DNS, (ii) via

despachador, (iii) via servidor e (iv) via cliente. Na distribuição de carga via DNS, o DNS

autoridade (ADNS - do inglês Authoritative DNS ) realiza o papel de escalonador e res-

ponde às requisições de resolução de nomes com o endereço IP de um servidor apropriado,

de acordo com a poĺıtica adotada. No caso da distribuição de carga via despachador, um

dispositivo (o despachador) recebe todas as requisições e as distribui entre as réplicas do

servidor web. Nas soluções baseadas no servidor, os servidores web executam a poĺıtica

de distribuição de carga e redirecionam o excesso de carga para os servidores menos car-

regados. Nos mecanismos baseados nos clientes, as aplicações clientes executam a poĺıtica

de distribuição de carga e selecionam o servidor apropriado.

O objetivo desta tese de doutorado foi estudar e propor novas soluções de distribuição

de carga para servidores web geograficamente distribúıdos. A tese foca em três dos qua-

tro tipos de soluções existentes: distribuição via DNS, via clientes e via servidor. Os

mecanismos baseadas em despachador não foram abordados por serem mais apropriados

para ambientes de aglomerados. O primeiro passo desta pesquisa foi a construção de uma

plataforma de testes para apoiar a análise e o desenvolvimento de soluções de distribuição

de carga. Esta etapa da pesquisa envolveu a implementação de um serviço web real,

baseado em um benchmark para aplicações de comércio eletrônico e gerou a publicação

[65]. A plataforma de testes apoiou o segundo passo da pesquisa, que consistiu em estu-

dar soluções baseadas em DNS. A partir deste estudo, foi proposta uma nova solução de

distribuição de carga via DNS que combina informações provenientes tanto de servidores

quanto de clientes nas tomadas de decisões. Este resultado foi publicado em [62].

Embora a plataforma de testes fornecesse facilidades para desenvolver e analisar novas

soluções de distribuição de carga, a falta de infraestrutura de hardware para executar

os experimentos em maior quantidade e escala tornou-se um empecilho. Desta forma,

decidiu-se utilizar simulações para os próximos passos da pesquisa. Para isso, desenvolveu-

se um simulador baseado em modelos reaĺısticos de geração de carga e internet.

O terceiro passo da pesquisa focou em soluções de distribuição de carga via servido-

res. Como resultado, foi proposta uma nova solução baseada em servidores que limita a

quantidade de carga que cada servidor sobrecarregado pode redirecionar para os outros,
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levando em consideração a demanda e a oferta global de recursos e a latência entre os

servidores. Esta solução foi publicada em [64].

O quarto passo da pesquisa foi propor uma nova solução baseada em clientes. Nesta

solução, ao invés de selecionar o melhor servidor de forma gulosa, assim como na maioria

das propostas encontradas na literatura, as aplicações clientes dividem sua carga entre

diversos servidores e alteram dinamicamente a quantidade de carga enviada para cada

um, de acordo com os tempos de resposta percebidos. Os resultados obtidos por esta

solução foram publicados em [63].

O último passo da pesquisa consistiu em estender a solução apresentada em [64],

tratando a divisão dos recursos dispońıveis em servidores remotos como um problema de

otimização. A nova solução foi analisada a partir de um número maior de simulações

que englobaram aspectos de parametrização da poĺıtica, escalabilidade e sensibilidade a

mudanças bruscas de carga de trabalho. Os novos resultados foram submetidos para [61].

Em resumo, as contribuições desta tese são:

1. Uma plataforma de testes e um software de simulação para apoiar o desenvolvimento

e avaliação de soluções de distribuição de carga;

2. Uma nova solução de distribuição de carga via DNS, que combina informações de

clientes e servidores;

3. Uma nova solução de distribuição de carga via clientes, que adapta a quantidade de

carga enviada para cada servidor dinamicamente;

4. Um middleware para compartilhamento de recursos entre as réplicas dos servidores

web;

5. Duas novas soluções de distribuição de carga via servidor. A primeira, baseia-se em

uma estratégia que limita a quantidade de carga que cada servidor sobrecarregado

pode submeter para servidores remotos. A segunda estende a primeira, tratando a

divisão de recursos como um problema de otimização.

Esta tese corresponde a uma coletânea de artigos e está organizada da seguinte forma:

• Caṕıtulo 2: Revisão bibliográfica envolvendo trabalhos correlatos e outros traba-

lhos que influenciaram o desenvolvimento da tese.

• Caṕıtulo 3: Corresponde ao trabalho [65]. Descreve o projeto e a implementação

de uma plataforma de testes para apoiar a análise e o desenvolvimento de soluções

de distribuição de carga para serviços web geograficamente distribúıdos. O traba-

lho também apresenta uma comparação de soluções representativas dos diferentes
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tipos existentes: baseado em DNS, baseado em despachador, baseado no servidor e

baseado no cliente.

• Caṕıtulo 4: Corresponde ao trabalho [62]. Apresenta o desenvolvimento e a ava-

liação de uma nova solução de distribuição de carga via DNS, que combina in-

formações de clientes e servidores visando amenizar os efeitos negativos do sistema

de caching do DNS sobre a distribuição de carga.

• Caṕıtulo 5: Corresponde ao trabalho [63]. Introduz o software de simulação para

soluções de distribuição de carga. Também descreve o desenvolvimento e a avaliação

de uma nova solução de distribuição de carga via clientes, que altera a quantidade de

carga que cada cliente submete para cada servidor de forma adaptativa, buscando

evitar a sobrecarga dos servidores e melhorar os tempos de resposta;

• Caṕıtulo 6: Corresponde ao trabalho [64]. Apresenta o desenvolvimento e a ava-

liação de uma solução de distribuição de carga via servidores, que limita a quanti-

dade de carga que cada servidor sobrecarregado pode redirecionar para servidores

remotos levando em consideração a demanda e a oferta global de recursos;

• Caṕıtulo 7: Corresponde a um trabalho submetido para [61]. Apresenta uma

extensão da solução apresentada no Caṕıtulo 6. Esta nova proposta utiliza pro-

gramação linear para otimizar a quantidade de carga que cada servidor sobrecarre-

gado pode redirecionar para servidores remotos.

• Caṕıtulo 8: Conclusões do trabalho e posśıveis extensões.

• Apêndice A: Apresenta análises estat́ısticas que complementam os resultados apre-

sentados nos caṕıtulos 4, 5 e 6.





Caṕıtulo 2

Conceitos e Revisão Bibliográfica

Este caṕıtulo apresenta conceitos relacionados à tese e trabalhos correlatos que influenci-

aram direta ou indiretamente no seu desenvolvimento. A Seção 2.1 descreve os diferentes

tipos de mecanismos de distribuição de carga para servidores web distribúıdos e apresenta

trabalhos que abordaram cada um deles. A Seção 2.2 apresenta trabalhos relacionados

à distribuição de carga em áreas afins. A Seção 2.3 aborda trabalhos relacionados às

técnicas de replicação e caching para serviços web e a Seção 2.4 apresenta trabalhos que

descrevem plataformas de testes para sistemas distribúıdos.

2.1 Distribuição de Carga para Servidores Web Dis-

tribúıdos

Nesta seção, são apresentados os tipos de solução de distribuição de carga para servidores

web distribúıdos e trabalhos acadêmicos que propõem soluções de cada tipo.

2.1.1 Distribuição de Carga via DNS

O principal propósito do DNS é permitir que usuários traduzam nomes para endereços IP

de forma eficiente. A informação do DNS é distribúıda em uma hierarquia de domı́nios e

subdomı́nios, sendo cada um deles administrado independentemente por um servidor de

nomes autoridade (ADNS) [59].

Os servidores de nomes são capazes de responder a dois tipos de consultas: iterativas

e recursivas. No primeiro tipo, o servidor de nomes retorna a resposta para a consulta

utilizando as informações de seu próprio banco de dados ou uma referência para outro

servidor de nomes que pode ser capaz de responder a consulta. No segundo tipo, o

servidor de nomes consulta todos os servidores de nomes necessários para obter a resposta

e retorná-la para o usuário.

7
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Para tornar a resolução de nomes mais eficiente, os servidores de nomes podem arma-

zenar mapeamentos de nome-para-IP em uma cache local, evitando consultar o ADNS

para cada resolução de nome. O tempo em que um mapeamento pode ser armazenado

em cache é definido por um valor TTL (Time to Live – Tempo de Vida), que é definido

pelo ADNS de cada domı́nio.

Normalmente, os servidores de nomes dos ńıveis mais altos da hierarquia são configu-

rados para enviar e receber apenas consultas iterativas. Quando um programa necessita

acessar uma URL, um resolvedor de nomes do sistema operacional envia uma consulta

recursiva para o servidor de nomes local. Então o servidor de nomes local realiza consul-

tas iterativas ao longo da hierarquia do DNS até ser capaz de responder a consulta do

usuário.

Nas soluções para distribuição de carga baseadas em DNS, o ADNS do servidor Web

distribúıdo desempenha a função de escalonador de clientes. Neste tipo de abordagem,

a URL do serviço fornece uma interface única para o cliente, para quem a distribuição

é transparente. A distribuição da carga é realizada no momento da resolução da URL

requisitada pelo cliente. Quando o ADNS recebe uma requisição para resolução de URL,

responde com o endereço IP de uma das réplicas do servidor web, de acordo com al-

guma poĺıtica de distribuição preestabelecida. A Figura 2.1 ilustra o funcionamento dos

mecanismos baseados em DNS.

Figura 2.1: Mecanismo de distribuição de carga via DNS.

A principal limitação das soluções para distribuição de carga baseadas em DNS é que os

mecanismos da internet para caching de endereços diminuem o controle do ADNS. Entre

o cliente e o ADNS, muitos servidores de nomes armazenam mapeamentos de endereço

para reduzir tráfego da rede, de forma que menos requisições de resolução de nomes

alcançam o ADNS. Uma maneira de aumentar o controle do ADNS é diminuir o TTL das

atribuições. Entretanto, TTLs muito pequenos aumentam o tráfego na rede e podem fazer

com que os servidores de nomes intermediários tornem-se gargalos do sistema. Por esta



2.1. Distribuição de Carga para Servidores Web Distribúıdos 9

razão, servidores de nomes intermediários podem recusar TTLs pequenos. Este problema

motivou a criação de estratégias de distribuição de carga que utilizam TTLs dinâmicos.

Colajanni, Yu e Dias [25] apresentam e comparam poĺıticas de distribuição de carga

baseadas em DNS. Os autores dividem as poĺıticas em três grupos, dependendo do tipo

de informações que utilizam:

• Poĺıticas que utilizam informações dos domı́nios dos clientes. Um exemplo des-

tas poĺıticas é o 2-Tier Round Robin, no qual o ADNS divide os clientes em dois

grupos, dependendo da quantidade de carga gerada, e aplica a estratégia rotativa

separadamente em cada grupo.

• Poĺıticas que utilizam informações dos servidores. Um exemplo destas poĺıticas é a

Least Utilized Node (LUN), na qual o ADNS seleciona o servidor menos utilizado.

• Poĺıticas que utilizam informações dos clientes e dos servidores. Um exemplo destas

poĺıticas é a Minimum Residual Load (MRL), na qual o ADNS utiliza informações

de carga dos clientes e da capacidade dos servidores para estimar o estado global do

sistema.

Os resultados apresentados pelos autores mostram que, dentre os algoritmos aborda-

dos, os mais promissores combinam um alarme asśıncrono que avisa que os servidores

tornaram-se sobrecarregados com informações do domı́nio do cliente (divisão de classes).

Informações detalhadas da carga dos servidores não se mostraram vantajosas.

Em outro trabalho, Colajanni e Yu [24] apresentam um estudo sobre poĺıticas para

distribuição de carga via DNS com TTL (time-to-live) variável. O uso de TTL variável

visa aumentar o controle do DNS, que é limitado pelo mecanismo de caching. Os autores

definem dois tipos de poĺıticas baseadas em TTL variável:

• TTL variável: diminui o TTL conforme o número de servidores sobrecarregados

aumenta;

• TTL Adaptativo: em um primeiro momento, o ADNS seleciona um servidor

(conforme uma das poĺıticas já mencionadas); em seguida, define um valor de TTL

de acordo com a capacidade do servidor. Por exemplo, a estratégia TTL/k divide

os domı́nios dos clientes em k classes, de acordo com a quantidade de carga gerada

pelo domı́nio, e define TTLs diferentes para cada classe. Quanto maior a carga

gerada pelo domı́nio, menor é o TTL. Isto faz com que domı́nios que geram mais

carga troquem de servidor com maior frequência, amenizando a diferença entre as

cargas de trabalho dos servidores.
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Moon e Kim [60] propõem uma solução baseada em Round Robin que utiliza três tipos

de informação para remover um servidor sobrecarregado da lista do ADNS: utilização

da CPU, utilização da rede e utilização da memória. A poĺıtica de remoção e adição

de servidores da lista combina estas três informações com diferentes pesos, que podem

ser alterados de acordo com a natureza da aplicação Web. A arquitetura proposta não

exige alteração do servidor de DNS. Um módulo independente coleta as informações dos

servidores e altera a lista do DNS, que por sua vez utiliza a estratégia rotativa.

Pan, Hou e Li [70] descrevem o sistema de seleção de servidores via DNS utilizado

pela Akamai, uma grande rede de distribuição de conteúdo (CDN) que replica o conteúdo

a ser distribúıdo em escala global. O DNS autoridade do site replicado retorna a URL

de um servidor DNS da rede de distribuição. Este servidor DNS retorna o endereço da

réplica mais próxima ao DNS local do cliente. Esta técnica pressupõe que o cliente está

localizado próximo ao seu DNS local.

Shaikh, Tewari e Agrawal [83] apresentam um estudo sobre duas questões importantes

relacionadas a mecanismos de distribuição de carga baseados em DNS: (i) os efeitos ne-

gativos do uso de TTLs pequenos ou nulos; e (ii) a pressuposição de que servidores DNS

dão indicativos da localização e do desempenho dos clientes. Os estudos mostraram que

o não uso de cache (TTL=0) pode causar uma sobrecarga na resolução de nomes de até

2 ordens de grandeza. Os autores também afirmam que a pressuposição de que a loca-

lização dos clientes é próxima à localização dos servidores DNS é violada com frequência.

Além disso, a medida de latência do DNS local não é um bom indicativo da latência dos

clientes. Os autores também sugerem a adição de um novo registro de recursos ao DNS

para identificar o cliente que originou a consulta de resolução de nomes, visando aumentar

a acurácia da seleção de servidores quando a proximidade do cliente é um fator decisivo.

Uma das contribuições desta tese é a proposta de uma nova solução de distribuição de

carga via DNS (Caṕıtulo 4). Esta solução utiliza informações de clientes, como a MRL

[25], mas combina estas informações com informações provenientes dos servidores para

diminuir o efeito negativo do sistema de caching do DNS sobre este tipo de solução.

2.1.2 Distribuição de Carga via Servidores

Nos mecanismos de distribuição de carga via servidores, após o primeiro ńıvel de distri-

buição de carga, feito na resolução de endereços, qualquer réplica do servidor distribúıdo

pode redirecionar requisições quando sobrecarregado. Uma desvantagem deste tipo de

mecanismo é que o uso de redirecionamento pode aumentar o tempo de resposta para

o cliente. Por outro lado, pode compensar o baixo controle do ADNS e contribuir para

uma melhor distribuição da carga. A Figura 2.2 ilustra o funcionamento deste tipo de

mecanismo.
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Figura 2.2: Mecanismo de distribuição de carga via servidores.

Cardellini [17] identifica três fases para poĺıticas de distribuição de carga via servidores:

• Poĺıtica de ativação do redirecionamento: determina quais nós do servidor web

podem atuar como redirecionadores. As poĺıticas de ativação de redirecionamento

podem ser centralizadas ou distribúıdas. Nas estratégias centralizadas, um único nó

decide quando ativar o redirecionamento e realiza um broadcast da decisão. Neste

tipo de estratégia, a decisão é tomada com base em informações globais, ou seja,

envolvendo todos os nós servidores. Já no esquema distribúıdo, cada nó servidor

decide quando deve ativar o redirecionamento. Estas estratégias podem considerar

somente informações locais, do próprio nó, ou informações globais. Assim como

as estratégias baseadas em DNS, a poĺıtica de ativação de redirecionamento pode

considerar diferentes tipos de informação, como a taxa de requisições por domı́nio

e a carga dos nós servidores;

• Poĺıtica de seleção de requisições: determina as requisições que podem ser redireci-

onadas, desde que o redirecionamento esteja ativo. Exemplos simples são: redire-

cionar qualquer requisição ou utilizar escolha aleatória. Poĺıticas mais elaboradas

podem levar em consideração informações do cliente, como sua localização, ou in-

formações mais detalhadas, como o conteúdo da requisição HTTP;

• Poĺıtica de localização de nó: determina o nó apropriado para o qual uma requisição

pode ser redirecionada. De maneira semelhante à poĺıtica de ativação de redirecio-

namento, a poĺıtica de localização de nó pode variar de acordo com a centralização

(ou não) da decisão e quanto ao ńıvel de informação considerado.

A arquitetura básica ilustrada na Figura 2.2 pode variar, de acordo com a técnica utili-

zada para encaminhar as requisições para outra réplica do servidor. Dentre estas técnicas,
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pode-se citar: triangularização [9], redirecionamento HTTP [37, 89, 98, 46], reescrita de

URL [53] e reescrita de pacotes [3]. Na triangularização, o cliente continua enviando pa-

cotes para o primeiro servidor contactado, mesmo que o serviço esteja sendo servido por

outro servidor. O primeiro servidor encapsula os datagramas recebidos em outros datagra-

mas e encaminha para o servidor destino. Este último, por sua vez, responde diretamente

para o cliente. O redirecionamento HTTP baseia-se na funcionalidade do protocolo HTTP

que permite ao servidor web responder uma requisição com os códigos de estado 301 ou

302 no cabeçalho da resposta. Estes códigos instruem o cliente a ressubmeter a requisição

para outro servidor. No mecanismo de reescrita de URL, o servidor redirecionador rees-

creve dinamicamente as URLs dos objetos contidos na página de resposta, de forma que

apontem para outros servidores. O mecanismo de reescrita de pacotes baseia-se em NAT

(Tradução de Endereço de Rede - Network Address Translation) [86]. Neste mecanismo,

todo servidor possui um IP viśıvel aos clientes e um IP privado. Quando um servidor

necessita redirecionar uma requisição, reescreve o IP fonte do pacote e o encaminha para

o IP privado de outro servidor. Este último, por sua vez, responde para o mesmo servidor

que encaminhou a requisição, que substitui o IP fonte da resposta e a encaminha para o

cliente.

Chatterjee et al [20] apresentam uma solução na qual o ADNS atribui as requisições

com base nas seguintes informações dos nós servidores: capacidade de processamento,

carga de trabalho (CPU, memória e I/O) e o tamanho dos documentos requisitados (cal-

culados a partir do tempo que o nó servidor necessita para servir o documento). Os

domı́nios clientes são divididos em categorias, para cada qual é atribúıdo um valor TTL

diferente. O ADNS reporta para todas as réplicas a informação global sobre os estados

das mesmas. As réplicas utilizam essa informação para redirecionar as requisições para a

réplica menos carregada, via redirecionamento HTTP.

Cardellini e Colajanni [17] compararam o desempenho de diferentes configurações de

poĺıticas de distribuição de carga via servidores. O estudo apresentado pelos autores

inclui soluções totalmente centralizadas (ativação e localização centralizada), totalmente

distribúıdas e h́ıbridas. Os resultados apresentados mostram que, embora a solução dis-

tribúıda apresente um desempenho pior, são mais fáceis de implementar e impõem menor

sobrecarga computacional e de comunicação.

Aarag e Jennings [3] propõem um sistema de reescrita de pacotes distribúıdo baseado

em uma função hash adaptativa. Neste sistema, uma função hash adaptativa define se

um servidor deve processar um pacote recebido ou encaminhá-lo para outro servidor. Se

o servidor deve encaminhar um pacote, usa NAT (Network Address Translation) para

reescrever os endereços fonte e destino do pacote e envia para o servidor apropriado. Os

pacotes de resposta também tem seus endereços reescritos e são enviados para o cliente.

Hong et al [46] apresentam uma técnica que tem o objetivo de diminuir o número de
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mensagens necessárias para coletar informação de carga dos servidores Web replicados.

Nesta técnica, os servidores são arranjados em anéis lógicos e trocam informação de carga

ao longo do anel com o objetivo de identificar os nós com mais e menos carga. Usa-

se redirecionamento HTTP para redirecionar as requisições dos clientes para o servidor

apropriado.

Andreolini et al. [6] comparam várias soluções de distribuição de carga que variam

de acordo com suas compatibilidades com quatro propriedades de sistemas autônomos:

descentralização de controle, coleta e utilização de informações, adaptação a mudanças e

colaboração fracamente acoplada. Os resultados apresentados mostram que a integração

desses conceitos à solução de distribuição de carga melhoram a estabilidade e a robustez

do sistema.

A solução proposta por Ranjan e Knightly [74] é composta por um conjunto de algo-

ritmos que consideram a carga das CPUs e as latências de rede para reduzir o tempo de

resposta e minimizar a utilização de recursos. Um algoritmo (QuID -Quality-of-Service for

Infrastructure-on-Demand) aloca dinamicamente servidores dentro do aglomerado para

atender a demanda local, enquanto um outro (WARD - Wide Area Redirection) decide

para qual aglomerado remoto deve redirecionar requisições em caso de sobrecarga. Neste

segundo caso, o próprio aglomerado redireciona as requisições, já que possui um enlace

rápido para outro aglomerado. Um terceiro algoritmo decide se novos servidores devem

ser alocados localmente ou se as requisições devem ser redirecionadas.

Pathan, Vecchiola, and Buyya [71] propõem uma solução similar a aquela proposta

por [74]. A principal diferença é que a primeira baseia-se em redirecionamento HTTP, ou

seja, o cliente é induzido a ressubmeter sua requisição para outro servidor. Já na segunda,

o servidor que redireciona a requisição intermedia a comunicação entre o cliente e o outro

servidor.

Ardagna et al. [7] combina técnicas de alocação de capacidade em nuvens distribúıdas

geograficamente com um mecanismo de redirecionamento de carga para minimizar os

custos para alocação de máquinas virtuais, garantindo restrições de qualidade de serviço.

O mecanimo de distribuição de carga baseia-se em predição de carga e utiliza técnicas de

otimização não linear para decidir a fração de carga que deve ser atendida localmente e a

fração que deve ser redirecionada.

Garg and Juneja [39] propõem uma solução na qual servidores e clientes colaboram

por meio de dois tipos de agentes: server ants, que são executados nos servidores, e client

ants, que são executados nos clientes. Tais agentes comunicam-se entre si para decidir o

melhor servidor para servir cada cliente. Também mantém informações históricas sobre

decisões anteriores que são levadas em consideração nas decisões futuras. Nishant et al.

[66] apresentam uma abordagem semelhante que utiliza agentes móveis (ants) para per-

correr a topologia da rede e identificar servidores sobrecarregados e não sobrecarregados.
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As informações coletadas pelos agentes são utilizadas na distribuição da carga entre os

servidores.

Esta tese apresenta duas novas soluções de distribuição de carga via servidores (Caṕı-

tulos 6 e 7). Na primeira, a distribuição de carga é condicionada de acordo com limites de

redirecionamentos impostos aos servidores sobrecarregados. Estes limites são calculados

com base na demanda e oferta global de recursos. A segunda solução estende a primeira,

tratando a divisão de recursos entre os servidores como um problema de otimização.

2.1.3 Distribuição de Carga via Clientes

Nos mecanismos de distribuição de carga via clientes, a poĺıtica de distribuição de carga

é executada na aplicação cliente (Figura 2.3). A principal desvantagem deste tipo de

mecanismo é a falta de transparência para a aplicação cliente, que normalmente é um

navegador web.

Figura 2.3: Mecanismo de distribuição de carga baseado no Cliente.

Um exemplo simples deste tipo de mecanismo de distribuição de carga é o uso de

espelhos (mirrors). Nesta solução, uma página web é apresentada ao usuário com opções

de diferentes URLs das réplicas dos servidores. O próprio usuário escolhe uma réplica da

qual acessará o serviço.

Em soluções mais elaboradas, pode-se adicionar funcionalidades de distribuição de

carga ao cliente por meio de smart clients carregados nas páginas web (ex. Java Applets)

ou por meio de proxies localizados próximos aos clientes.

Dikes et al. [34] apresentam uma comparação de 6 poĺıticas de seleção de servidores

via clientes: Random, Latency, BW, Probe, ProbeBW e ProbeBW2. Random seleciona

um servidor aleatoriamente. Latency e BW selecionam os servidores que oferecem a

melhor latência de rede e banda de rede, respectivamente. Probe sonda todas as réplicas

de servidores e seleciona aquela que responder primeiro. ProbeBW considera somente n

réplicas com melhores bandas de rede e aplica Probe a elas. ProbeBW2 sonda a latência
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de rede de todos os servidores e aplica BW aos n primeiros a responder. Em resumo,

os resultados mostram que as poĺıticas baseadas em sondagem apresentaram melhores

desempenhos.

Conti, Gregori e Panzieri [28] propõem uma poĺıtica de distribuição de carga via cli-

entes que atribui uma nova requisição para a réplica com menor tempo de resposta. Para

isso, antes de cada requisição, os clientes enviam mensagens para todos os servidores e

medem o tempo das respostas. Em seguida, a requisição é enviada para o servidor que

apresenta o menor tempo de resposta. Em um trabalho relacionado [26], os autores com-

param esta poĺıtica com uma poĺıtica na qual o cliente divide a requisição em blocos

menores e faz o download desses blocos, em paralelo, de todas as réplicas dispońıveis.

Segundo os autores, a solução paralela gera sobrecarga, porém em alguns casos pode ser

útil: (i) quando os documentos para download são grandes; (ii) quando as operações do

cliente são apenas de leitura; (iii) quando os clientes desejam maior vazão; e (iv) quando

o desempenho das réplicas não é o gargalo do sistema.

Mendonça et al [56] apresentam uma comparação de poĺıticas de seleção de servidores

para serviços web SOAP (Simple Object Access Protocol). Consideraram cinco poĺıticas

no estudo: random selection, parallel invocation, HTTPPing, best last and best median.

Random selection seleciona um servidor aleatoriamente. Parallel invocation invoca todos

os servidores em paralelo e aguada a resposta mais rápida. HTTPPing envia uma pequena

requisição HTTP para todos os servidores em paralelo. O primeiro a responder é invocado.

Best last invoca o servidor com o melhor desempenho recente e best median invoca o

servidor com o melhor que apresenta o melhor tempo de resposta mediano entre as últimas

k invocações.

Esta tese propõe uma nova solução de distribuição de carga via clientes (Caṕıtulo 5) na

qual os clientes dividem sua carga entre diversos servidores. A fração de carga destinada

a cada servidor é adaptada dinamicamente, buscando melhores tempos de resposta e

evitando a sobrecarga dos servidores.

2.1.4 Distribuição de Carga via Despachador

Nos mecanismos baseados em despachador, um dispositivo trabalha como despachador

do sistema, recebendo todas as requisições dos clientes e encaminhando para uma das

réplicas do servidor web, de acordo com a poĺıtica de distribuição de carga utilizada. O

despachador possui o único endereço IP viśıvel para os clientes e o encaminhamento da

requisição é transparente. A Figura 2.4 ilustra o funcionamento deste tipo de mecanismo.

A principal vantagem dos mecanismos baseados em despachador é o controle total

destes mecanismos sobre a distribuição das requisições dos clientes, já que todas as re-

quisições passam obrigatoriamente pelo despachador. Por outro lado, uma desvantagem
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Despachador
(Distribuidor de carga)

Cliente

1 2

4 3

1) Requisição HTTP chega ao despachador
2) Despachador encaminha a requisição a
    uma réplica
3) Resposta HTTP chega ao despachador
4) Despachador encaminha a resposta para
    o cliente

Réplica 3

Réplica 2

Réplica 1

Figura 2.4: Mecanismo de distribuição de carga baseados em despachador.

é que o despachador é um ponto único de falha e pode se tornar o gargalo do sistema.

As técnicas utilizadas para encaminhar as requisições para as réplicas podem ser divi-

didas em duas categorias, de acordo com a camada da rede na qual são aplicadas: camada

de transporte ou camada de aplicação. Nas técnicas aplicadas à camada de transporte

(TCP/IP), o servidor é determinado durante o estabelecimento da conexão TCP. Posśıveis

mecanismos de roteamento de requisições para estas técnicas são [19]:

• Reescrita dupla de pacotes (Packet Double-Rewriting): mecanismo baseado em NAT

[86], semelhante ao mecanismo de reescrita de pacote descrito anteriormente. A

diferença para o mecanismo anterior é que, neste caso, a tradução de endereço é

realizada de forma centralizada pelo despachador;

• Reescrita simples de pacotes (Packet Single-Rewriting): o despachador altera o

IP destino dos pacotes enviados pelos clientes e os encaminha para o nó servidor

apropriado. O nó servidor altera os IPs fonte para o IP viśıvel e os encaminha

diretamente para o cliente [32];

• Tunelamento (Tunneling): o despachador empacota os pacotes enviados pelos clien-

tes em outros pacotes e envia estes novos pacotes para o nó servidor apropriado. O

nó servidor desempacota e processa o pacote original e responde diretamente para

o cliente [72];

• Encaminhamento de pacotes (Packet Forwarding): o despachador compartilha o

mesmo IP com os nós servidores. Os pacotes enviados pelos clientes são encaminha-

dos para os endereços MAC privados dos nós servidores, que respondem diretamente

para o cliente.

Nas técnicas aplicadas à camada de aplicação, o despachador primeiro estabelece a

conexão TCP com o cliente, examina a requisição HTTP e então determina o nó servidor
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para o qual encaminhar a requisição. Este tipo de técnica pode ser menos eficiente do

que aquelas aplicadas à camada de transporte, porém permite poĺıticas de distribuição

mais sofisticadas. A análise do conteúdo da requisição possibilita, por exemplo, melhorar

o uso das caches dos servidores, prover serviços diferenciados em servidores especializa-

dos, aumentar o compartilhamento de carga e explorar afinidade de clientes. Dentre os

mecanismos para roteamento das requisições, pode-se citar [19]:

• TCP gateway : um proxy no despachador intermedia a comunicação entre clientes e

servidores;

• TCP splicing : o despachador mantém uma conexão TCP permanente com cada

servidor. Uma vez que a conexão entre um cliente e o despachador é estabelecida

e uma conexão com um servidor é escolhida, as duas conexões são conectadas de

forma que um pacote é encaminhado de um endpoint para outros sem atravessar a

camada de transporte até a camada de aplicação [23];

• Hand off : uma vez que a conexão TCP com o cliente é estabelecida e um servidor

é escolhido, o despachador transfere seu endpoint da conexão TCP para o servidor,

que passa a comunicar-se diretamente com o cliente [69].

Liu e Lu [54] propõem uma solução para distribuição de carga na qual um servidor

centralizado realiza o papel de redirecionador de requisições. Este servidor recebe as

requisições de todos os clientes e, de acordo com a poĺıtica de distribuição de carga,

redireciona as requisições (via redirecionamento HTTP) para um servidor apropriado.

Além de utilizar o estado dos servidores na poĺıtica de distribuição, a solução de Liu e Lu

utiliza um controle de admissão que dá prioridade para requisições com maior recompensa.

Dentre os nós servidores que admitem receber a requisição, aquele que apresenta menor

tempo de resposta é escolhido.

Xiong et al. [94] propõem uma solução baseada em múltiplos despachadores. Nesta

solução, chamada de MDDR (Multiple Dispatchers with Direct Routing), vários despacha-

dores compartilham o mesmo endereço e recebem todas as requisições. Cada um utiliza

uma função sobre o número da porta do cliente para decidir se atende ou descarta a

requisição. Uma desvantagem desta solução é que não pode ser aplicada em servidores

distribúıdos geograficamente.

Wang et al. [93] descrevem uma solução que utiliza o padrão OpenFlow para distribuir

a carga entre os servidores web. Nesta solução, um distribuidor de carga centralizado

instala regras do tipo wildcards nos switches para direcionar as requisições de grupos de

clientes para diferentes servidores, de acordo com suas capacidades.

O trabalho [40] apresenta um levantamento de diversas técnicas para distribuição

de carga via despachador. Apesar dessas técnicas serem mais apropriadas para distri-
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buição de carga entre computadores de um aglomerado, muitas das técnicas têm aplicação

também no caso de servidores geograficamente distribúıdos.

Apesar de muitas das idéias e técnicas relacionadas às soluções baseadas em despa-

chadores serem aplicáveis à distribuição de carga para servidores geograficamente dis-

tribúıdos, estas soluções são mais apropriadas para ambientes de clusters e não foram

abordadas nesta tese.

2.2 Distribuição de Carga em Outras Áreas

Cheung e Jacobsen [22] propõem uma solução para distribuição de carga para sistemas

publish/subscribe. Nesta solução os clientes (subscribers) interagem com agentes (brokers)

que executam poĺıticas de distribuição de carga. Quando um agente detecta sobrecarga,

ele negocia a transferência de carga com uma lista de outros agentes. Quando um outro

agente aceita receber a carga excedente, os dois iniciam uma sessão de distribuição de

carga. Então, o agente sobrecarregado seleciona um conjunto de assinantes e solicita que

eles migrem para o outro agente. Um agente nunca se envolve em mais uma sessão de

distribuição de carga simultaneamente.

Dobber et al. [33] comparam três soluções de distribuição de carga para grades com-

putacionais. A primeira é uma solução simples que divide a carga igualmente entre os

nós processadores. A segunda, chamada de Dynamic Load Balancing (DLB) utiliza in-

formações históricas para estimar o tempo de resposta dos nós e tenta calcular uma distri-

buição ótima. A última, chamada Job Replication (JR), replica as tarefas em n diferentes

nós e aceita a primeira resposta. Segundo os autores, DLB e JR apresentam melhores

resultados que a distribuição equitativa. Eles propõem uma solução que combina as duas

abordagens e alterna entre elas de acordo com determinadas métricas.

Quang et al. [92] apresentam uma solução de distribuição de carga para sistemas P2P

no qual cada peer mantém um histograma com a carga global do sistema. O histograma

armazena a carga média de grupos de nós sem sobreposição. Esse histograma é utilizado

nas decisões da poĺıtica de distribuição de carga e é mantido por meio da comunicação

entre peers vizinhos que disseminam toda informação que acumulam.

Galloway et al. [38] propõem uma poĺıtica de distribuição para arquiteturas em nuvem

que considera o consumo de energia para distribuir máquinas virtuais entre as máquinas

f́ısicas da nuvem. Segundo os autores, esta poĺıtica proporciona economia de energia

quando comparada a uma poĺıtica rotativa, como aquela utilizada no Eucalyptus, um

conhecido software para fornecer infraestrutura como serviço (IaaS – Infrastructure as a

Service).

Ren et al [76] apresentam uma solução para distribuição de carga para servidores

replicados em uma nuvem. Nesta solução, a poĺıtica de distribuição utiliza dados históricos
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de requisições e de capacidade dos servidores para estimar a carga dos servidores caso

sejam selecionados para atender uma nova requisição. O servidor que apresentar a menor

carga estimada é selecionado.

2.3 Replicação e Caching na Web

As soluções para replicação e caching de aplicações web podem influenciar diretamente a

distribuição da carga. Por exemplo, em soluções que utilizam replicação parcial de dados,

a carga gerada para manter os dados consistentes pode variar de uma réplica para outra.

Esta seção apresenta diversos trabalhos que propõem soluções para replicação e caching

de aplicações web com dados dinâmicos. Alguns desses trabalhos influenciaram o projeto

e o desenvolvimento da plataforma de testes.

Groothuyse et al [42] propõem uma técnica de replicação parcial dos dados. Nesta

técnica, as tabelas do banco de dados são agrupadas de acordo com a necessidade de tem-

plates de acesso. São os chamados clusters de tabelas. Múltiplos servidores armazenam

réplicas dos clusters de tabelas e um roteador de consultas realiza a distribuição de carga

entre os servidores. Apesar de todas as réplicas de tabelas terem que ser atualizadas a

cada modificação, nem todos os servidores precisam executar todas elas. Uma desvanta-

gem é que o sistema proposto não fornece apoio a transações, considerando cada acesso

ao banco de dados como uma atividade separada.

Os trabalhos [95], [81] e [79] apresentammiddlewares semelhantes para replicação ativa

de serviços web SOAP. De forma geral, nas soluções apresentadas os clientes acessam o

serviço web por meio de um conjunto de proxies que enviam as requisições para todas as

réplicas do serviço de forma totalmente ordenada. Como todas as réplicas executam as

operações na mesma ordem, a consistência dos dados é mantida.

Os trabalhos [36] e [68] apresentam middlewares para replicação passiva de serviços

web SOAP. Nestas soluções, uma réplica primária processa todas as operações e reporta

as atualizações para um conjunto de réplicas secundárias. Caso a réplica primária falhe,

um detector de falhas determina outra réplica para assumir a função da réplica primária.

Amiri et al. [4] propõem um mecanismo para caching de dados dinâmicos para

aplicações web. Na abordagem proposta, os servidores de borda (edge servers) são instru-

mentados com um mecanismo chamado DBProxy. Este mecanismo gerencia a conexão re-

mota entre a aplicação web e o banco de dados principal (back-end database). O DBProxy

intercepta chamadas SQL disparadas pela aplicação e determina se elas são satisfeitas pela

cache local. Caso não sejam, as chamadas são encaminhadas ao banco de dados principal.

Poĺıticas de gerência da cache determinam se uma chamada externa é armazenada ou não.

A cache é implementada como visões materializadas que correspondem a subconjuntos

horizontais e verticais das tabelas originais.
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Olston et al. [67] desenvolveram um sistema de caching via proxy escalável capaz

de distribuir conteúdo dinâmico para um amplo número de usuários. Neste sistema, os

usuários acessam as aplicações indiretamente, por meio de proxys. Todas as atualizações

são encaminhadas para servidores de dados. Os servidores proxy notificam as atualizações

uns aos outros e possuem um módulo de invalidação que remove os dados potencialmente

inconsistentes da cache.

Tolia e Satyanarayanan [90] apresentam um middleware chamado Ganesh, cujo ob-

jetivo é diminuir o volume de dados transmitidos entre o banco de dados principal e

os servidores de cache. Os dados são fragmentados e “resumidos” utilizando-se hashing

(SHA-1).

Amza et al [5] propõem um sistema de caching transparente para conteúdo Web

dinâmico. A solução utiliza um mecanismo de particionamento do esquema do banco

de dados que permite a realização de consultas parciais. Os resultados das consultas

parciais são utilizados para construir a resposta da consulta original. A consistência das

caches é mantida por meio da invalidação de resultados de consultas prévias, via multicast

(comunicação em grupo confiável).

Bouchenak et al [13] apresentam um sistema de cache para conteúdo Web dinâmico

chamado AutoWebCache. Este sistema armazena as páginas geradas dinamicamente in-

dexadas pela URI das requisições dos clientes, incluindo os parâmetros da requisição. Uma

tabela mantém detalhes das consultas (somente leitura) que geraram as páginas em cache.

Quando ocorre uma escrita, um mecanismo analisa as consultas afetadas pela atualização

e invalida as páginas relacionadas em cache.

Fagni et al [35] propõem um mecanismo de cache para buscadores web chamado SDC

(Static Dynamic Cache). Este mecanismo divide a cache em dois ńıveis, uma porção

estática e uma porção dinâmica. Na porção estática, são armazenados os resultados das

consultas mais frequentes, obtidas a partir de históricos do buscador. As demais consultas

são armazenadas na porção dinâmica, utilizando alguma poĺıtica de atualização, como

LRU (Least Recently Used).

Em prinćıpio, está fora do escopo deste trabalho estudar a relação entre os mecanismos

de replicação e de distribuição de carga. Neste trabalho, supõe-se que a carga gerada para

replicação dos dados e sua variação no tempo são sempre similares em todas as réplicas,

e, portanto, não têm influência no balanceamento de carga. Além disso, supõe-se que os

servidores web não hospedam outras aplicações além da aplicação replicada. Desta forma,

considera-se que não há outras fontes de carga influenciando o desempenho do servidor.

Esta suposição é plauśıvel pois, mesmo em situações nas quais recursos de hardware tem

que ser compartilhados por diversas aplicações, soluções de virtualização permitem isolar

a quantidade de recursos alocados para uma aplicação espećıfica.
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2.4 Plataformas de Testes

Esta seção apresenta trabalhos relacionados a plataformas de testes para sistemas dis-

tribúıdos. Hong et al [45] descrevem a implementação de uma plataforma de testes (6Pla-

netLab) implementado na China, utilizando 50 nós espalhados por diversas universidades.

Apesar de utilizar o arcabouço do PlanetLab, a versão apresentada é constrúıda sobre um

backbone IPv6 e, segundo os autores, acrescenta aspectos que melhoram a robustez e

o custo/eficiência do testbed. Dentre eles: (i) um mecanismo semi-automático de recu-

peração a falhas; (ii) um middleware Keep-Alive Middleware para verificação da conexão

dos nós com a Internet; e (iii) compartilhamento do sistema operacional maximizado.

O artigo [75] descreve o Ultrascience Net (USN), uma plataforma de testes para

aplicações cient́ıficas de larga-escala. O USN é voltado para aplicações que requerem

alta largura de banda para suportar transferência de grandes quantidades de dados. A

rede interliga Atlanta, Georgia, Chicago, Illinois, Seattle, Washington e Sunnyvale por

meio de quatro links de 10 Gb/s dedicados.

A motivação para utilização de plataformas de testes para redes de larga escala é a

liberdade de implantar e testar hardware, middleware e software. No artigo [55], Martin

et al descrevem a implementação do Data Transatlantic Grid (DataTAG), um testbed im-

plantado em 2002, interligando o CERN, na Súıça, e o StarLight, em Chicago. O objetivo

principal do DataTAG é apoiar a pesquisa da comunidade de grades computacionais sobre

questões impostas por aplicações envolvendo grandes quantidades de dados sobre redes

gigabit transoceânicas.

Miyachi, Chinen e Shinoda [57] argumentam que softwares de simulação não são su-

ficientemente flex́ıveis (esquema e linguagem de modelagem próprios) para refletir o que

será o produto final. Além disso, as simulações consomem muito tempo de execução. Afir-

mam que simular a Internet é praticamente imposśıvel, graças a sua escala, complexidade

e natureza dinâmica. Neste artigo, os autores apresentam um sistema para plataformas

de testes configuráveis, que utilizam nós reais. Neste sistema, que supõe que todos os re-

cursos estão no mesmo site, os usuários criam topologias experimentais virtuais (VLAN)

sem alterar as conexões f́ısicas da rede. Para realização dos experimentos, utilizaram o

StarBED [58, 2] para testar o sistema. O StarBED é um testbed com 680 PCs interligados

por switches.

Sanghi et al [80] apresentam uma plataforma de testes espećıfica para avaliação de es-

tratégias de distribuição de carga. A plataforma permite testar dois tipos de estratégias:

baseadas em DNS e em despachador. As informações de carga dos servidores são mo-

nitoradas e periodicamente são informadas ao despachador, que dependendo da poĺıtica

adotada, utiliza essas informações para encaminhar as requisições HTTP. O despachador

reporta informações do seu cluster para o DNS. Este último (BIND modificado) envia o
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endereço IP do cliente para uma aplicação paralela que decide para qual cluster encami-

nhar o cliente. As poĺıticas implementadas são: aleatória, rotativa, baseada na capacidade

do cluster e baseada no servidor com menos carga.

Esta tese apresenta duas ferramentas para apoiar a análise e o desenvolvimento de

soluções de distribuição de carga. A primeira é uma plataforma de testes (Caṕıtulo 3)

constrúıda sobre uma implementação real de um serviço web distribúıdo. A segunda é um

software de simulação baseado em modelo reaĺıstico de geração de carga web (Caṕıtulo

5).



Caṕıtulo 3

Lab4WS: A Testbed for Web

Services

3.1 Introduction

The Web has become the universal support for applications. Increasingly, heavy loaded

applications, that place extra demand on servers and network resources, are been deployed

in clusters located at geographically distributed datacenters linked via the Internet. In

each datacenter, a cluster of servers hosts an application replica, that can itself be locally

replicated, for the sake of fault-tolerance and performance.

Many factors contribute for successful deployments in these environments, such as the

adopted replication methods and load balancing mechanisms. Ideally, before the actual

deployment of such a complex service, engineers would like to have a way to quantitatively

analyze aspects such as performance and availability achieved by the different solutions

available. The result is an increasing need for tools and techniques that assist developers

in understanding the behavior of these systems.

The tools usually employed to fulfill this need can be classified into modeling (e.g.,

queue modeling), simulation, and benchmarking a real deployment. Simulation and mo-

deling are certainly powerful assessment tools and allow researchers to evaluate a variety

of application deployments in a flexible way. However, using these approaches, many sys-

tem details need to be simplified, leading sometimes to less accurate evaluations. From

another standpoint, experiments on the Internet are very hard to build and to main-

tain. Besides, in a real environment, it is difficult to isolate variables of interest and to

reproduce experiments with exactly the same conditions.

In the academy, many researches have studied topics related to the availability and the

performance of distributed and replicated Web services. However, due to the experimental

barriers, most of the studies made so far focus themselves on simulations, or rely on

23
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small scale environments to validate their solutions. Analyzing the literature, we realized

that researchers who needed to perform large numbers of experiments, involving different

techniques or mechanisms, have adopted simulations. Real environments, that are less

flexible to be adapted to different techniques and mechanisms, have been used to validate

specific implementations that need more realistic environments. Performing experiments

with the flexibility of simulations and the level of details of real environments is a great

challenge.

In order to address this challenge, this paper explores the feasibility of a fourth appro-

ach: building a software equipment that allows engineers to experiment with smaller scale

deployments that preserve the properties of their real counterpart systems. Therefore, we

describe the Lab4WS (Lab for Web Services), a testbed designed to ease the evaluation

of techniques and mechanisms for improving Web services availability and performance

– mainly replication and load balancing solutions. The testbed provides experimental

conditions that are similar to those found in real systems and the flexibility of simulati-

ons to be adapted to new techniques and mechanisms. Lab4WS adopts the TPC-W, a

well accepted e-commerce benchmark, as the basis for its workload generation. Alongside

TPC-W, Lab4WS offers tools that help developers to set up and execute experiments to

test their solutions.

This paper contributes to the reduction of the difficulties associated with testbed-

based assessment of web applications presenting the requirements we have identified for

the development of the Lab4WS Testbed and the architecture we developed to accomplish

these requirements. Moreover, we illustrate the Lab4WS use presenting a case study

in which we evaluate four WAN load balancing mechanisms (DNS-based, server-based,

dispatcher-based, and client-based) for a replicated Web service.

The remainder of this text is organized as follows. In Section 3.2 we report the

requirements that guided us to the development of the testbed. Section 3.3 describes the

solutions we have adopted to fulfill the requirements and the architecture of the testbed.

Section 3.4 presents a case study in which we evaluate four classes of WAN load balancing

mechanisms. Section 3.5 presents related works and Section 3.6 concludes the paper with

our final comments and future work.

3.2 Testbed Requirements

The design and implementation of Lab4WS have been guided by an initial set of require-

ments extracted from our on experiments and the analysis of the facilities used by related

research (Section 3.5). Here we summarize the requirements we have considered so far.

• Benchmark Application: The initial application available in Lab4WS should be
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both widely available—to allow the reproduction of experiments by others—and should

represent a benchmark workload for Web applications.

• Internet Latencies and Bandwidths: The testbed should allow the emulation of

the latencies and bandwidths usually found in the Internet. This requirement is important

because it affects the behaviour of the application in many ways. For example, the obvious

implication of selecting higher latencies and low bandwidths is a sharp drop in the response

time perceived by the client. Higher latencies also affect the delay for the propagation

of state updates among replicas. Latency variations affect how control information flows

through the various load balancing agents, thus it is crucial to the comparison of competing

load balancing policies.

• DNS System: The DNS System is very relevant for our studies. Its hierarchical design

directly affects the distribution of the load between the replicas of the Web service and this

distribution is essential to reproduce realistic workloads. In most of the load balancing

solutions proposed in the literature, the DNS has been chosen as a load balancing agent

(Section 3.5).

• Realistic Load Generation: The distribution of clients across Internet domains is

one of the important factors that define the workload that reaches the application. Since

the TTL adopted by a DNS server for the resolution of the name of an application affects

all clients contained in the domain served by the server, larger domains will tend to

generate heavier loads than smaller domains. Therefore, if larger domains are directed

to a given application server and smaller ones are redirected to another one, the former

will receive a heavier load than the later. An important requirement for the testbed is

to allow a precise assessement of the impact on the workload of different DNS and client

setups. In Lab4WS we should be able to condition workloads by changing the number of

clients per domain, the DNS TTL times, and the workload (web interactions per second)

generated by each client.

• Adaptability to New Mechanisms: Many replication and load balancing solutions

have been proposed by different authors and have been validated in different environments,

simulated or not (see Section 3.5). An important requirement of the testbed was the

facility of deploying new solutions, in order to allow the comparison of the large variety

of existing mechanisms, and to support the development of new ones.

• Experiment Management Facilities: The kind of experiments we intended to per-

form might involve tens of machines and require the configuration of tens of parameters.

So, another testbed requirement was to facilitate the control of the experiment execution

and to allow the user to vary the parameters of the evaluated mechanisms in a friendly

way.
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3.3 Lab4WS Testbed

The main features of Lab4WS are: (i) its flexibility for building and testing different

solutions for web services; and (ii) provision of a realistic experimental environment for

the quantitative assessement of the solutions. These two characteristics are a direct

consequence of our decisions on how to select mechanisms that fulfill the requirements

elicited in the previous section.

3.3.1 Addressing the Requirements

This section describes the software architecture and mechanisms that form the current

implementation of Lab4WS.

• Benchmark Application: Our intention was to evaluate the Web system solutions

under the load of well known Web applications, such as E-Commerce applications. The-

refore, we decided to implement a SOAP Web service based on the TPC-W benchmark

[91], a transactional benchmark for E-Commerce Web sites that is well accepted by the

research community. This benchmark specifies a set of Web interactions that represent

recurrent E-Commerce transactions.

• Internet Latencies and Bandwidths: In order to fulfill the latency and bandwidth

requirement, the software architecture of the testbed has been implemented independently

of the actual network upon which it will be deployed. The user is free to deploy the testbed

in any network environment. The testbed can emulate the latencies and bandwidths

usually found in LANs and WANs for a wide range of setups. Although emulation does

not reproduce the actual variability of the Internet latencies, it emulates latencies of the

same magnitude of those found in the Internet.

• Realistic Load Generation: The TPC-W benchmark also specifies three kinds of

workloads that vary according to the percentage of read and write operations: (95re-

ads/5writes, 80reads/20writes, and 50reads/50writes). This workloads are defined by

tables that specify the probabilities with which a client chooses one of the available in-

teractions to continue its Web session. The load generators of the Lab4WS testbed were

implemented in compliance with the TPC-W specification, ensuring that the generated

load emulates a very realistic load.

Besides the realistic load, that emulates real users, the testbed is also able to generate

constant request rates, which are useful for evaluating the Web system throughput and

response times. The constant request rate is generated through a pool of threads that

emulate clients.
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In order to distribute the load generation into different domains, we adopted the

solution used by [24]. In this paper, the authors propose to divide clients into domains

according to the Zipf’s distribution, where the probability of a client to belong to the

ith domain is proportional to 1/ix. This solution was motivated by previous works that

demonstrate that if one ranks the popularity of client domains by the frequency of their

accesses to a Web site, the size of each domain is a function with a big head and a very

long tail. In the Lab4WS Testbed, the user can define the total number of clients and

vary the skewness of their distribution changing the exponent x of the Zipf’s distribution.

• DNS System: As well as the other Internet features, the DNS caching system can

not be easily modeled. In our testbed, the effect of DNS caching is abstracted. All clients

strictly respect the DNS TTL before asking for a new name resolution. A limitation of

this abstraction is that the behavior of DNS-based mechanisms in our testbed can be

considered as an optimistic behavior, since in real environments the non cooperative DNS

servers can degradate the control of the DNS.

• Adaptability to New Mechanisms: In order to fulfill this requirement we designed

the software architecture of the testbed in such a way that the basic Web system ele-

ments (Servers, Dispatchers, and Proxies) are extensible by components that implement

replication or load balancing mechanisms. These components present a standard interface

that the Web system elements are able to access. Thus, testbed users can implement new

components that implement new solutions and deploy them on the testbed.

• Experiment Management Facilities: To deal with this requirement, we designed the

testbed elements with an RMI (Remote Method Invocation) interface, which is accessed

through a centralized experiment manager that allows the testbed user to control the

entire system.

3.3.2 Lab4WS: Software Architecture

The software architecture of the testbed is composed of three systems: (i) the TPCW

Web Service – a Web Service that simulates the workload of an e-commerce Web site;

(ii) the Control Infrastructure – the set of elements that control the experiments; and

(iii) the Functionality Components – that implement the replication and load balancing

mechanisms that are tested. Figure 3.1 illustrates the testbed architecture. These parts

are detailed in the following.
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Figure 3.1: Testbed architecture.

TPCW Web Service

The TPCW Web Service is a Web Service based on the TPCW benchmark. We modi-

fied the implementation from the University of Wisconsin,1 encapsulating the database

operations as a Web service. The resulting service consists of a set of 20 operations that

allow clients to search and order products.

Control Infrastructure

The Control Interface comprises a set of emulators that emulate devices in which mecha-

nisms defined by the users may be deployed. Emulators are extended by Functionality

Components, which implement the user mechanisms. There are three types of emulators:

Emulated Clients, Emulated Proxies, and DNS Emulator. Emulated Clients are elements

that generate load for the TPC-W Web Service. Emulated Proxies emulate devices that

intercept messages between clients and service providers. Finally, the DNS Emulator is

the element that emulates a DNS server.

The Control Infrastructure also comprises the Testbed Manager, which offers a Web

interface that allows users to manage their experiments. The Testbed Manager controls

all emulators through an RMI interface and provides the following functionalities: (i)

experiment management; (ii) upload and deployment of Functionality Components; and

(iii) on-line performance information. Figure 3.2 shows some snapshots of the Testbed

Manager Web interface.

1http://mitglied.lycos.de/jankiefer/tpcw/index.html
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Figure 3.2: Manager Web interface

Functionality Components

The Functionality Components implement the mechanisms defined by the user that can be

deployed on the Control Infrastructure emulators. There are three types of Functionality

Components: (i) Emulated Client Components; (ii) Emulated Proxy Components; and

(iii) DNS Emulators Components. As their names suggest, they aggregate functionalities

to Emulated Clients, Emulated Proxies, and DNS Emulators, respectively. In our initial

experiments, we have implemented 8 components:

Emulated Client Components

• DNS Cache Simulator: Simulates DNS caching at the client side.

• Client Best Last: A client-based load balancing mechanism. Clients store the response

time of the last invocation of certain operation for all replicas and invoke the replica that

presents the best last response time.

Emulated Proxy Components

• Passive Replication Middleware: This component allows the replication using a master-

slave strategy. One of the replicas is chosen as the master replica, which processes all write
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and critical read operations.

• Active Replication Middleware: This component allows the replication using an active

strategy. In this strategy, all write operations are broadcasted to all replicas and processed

in the same order.

• HTTP Round Robin Redirector: This component allows the use of load balancing

based on server-side HTTP redirection. The Emulated Proxies are placed in front of the

Web servers and intercept all incoming requests. If the server utilization exceeds a given

threshold, the proxy starts redirecting the requests to one of the other server replicas.

• HTTP Least Loaded Dispatcher: This component allows the use of a dispatcher-based

load balancing mechanism. An Emulated Proxy is placed between the clients and the

servers. It receives all requests and forwards them to the least loaded replica according

to the server utilization information.

DNS Emulator Components

• DNS Round Robin: When a request for name resolution arrives, the DNS Emulator

responds with the address of one of the replicas in a round robin way;

• DNS Least Loaded: The DNS Simulator receives utilization information from moni-

tors of each Web Service replica. When a request for name resolution arrives, the DNS

Simulator responds with the address of the less loaded replica.

3.3.3 Testbed Usability

The Lab4WS Testbed allows the assessment of replication and load balancing solutions in

a variety of ways, such as: (i) comparison of replication solutions (e.g. active and passive

approaches); (ii) comparison of load balancing mechanisms; (iii) evaluation of different

settings of replication and load balancing solutions; and (iv) evaluation of replication or

load balancing solutions under different conditions of network latencies and bandwidths.

3.4 Case Study: Comparing WAN Load Balancing

Mechanisms in a SOA Scenario

The load balancing is a key issue for the performance of a replicated Web service. This

problem consists on providing the dynamic binding between clients and Web service re-

plicas, aiming to minimize the maximum load of a service replica, between all replicas, at

a given time.



3.4. Case Study: Comparing WAN Load Balancing Mechanisms in a SOA Scenario 31

There are four classes of load balancing mechanisms for geographically distributed

Web services in the literature [16]: DNS-based, Server-based, dispatcher-based and client-

based. In the DNS-based solutions, the Authoritative DNS (ADNS) of the replicated Web

server performs the role of the client request scheduler. When it receives a request for a

URL resolution, it replies the IP address of one of the server nodes, according to some

load distribution policy. In Server-based strategies, the load distribution policy runs in

the server side. Any overloaded server replica can redirect requests to other replicas. In

dispatcher-based strategies, a host placed between clients and server replicas receives all

requests and forwards them to the appropriate replica. In the client-side strategies, the

client runs the distribution load policy and decides to which server it sends the requests.

All classes may vary in a number of parameters, such as: the distribution policy, the level

of information used in decision making, and the periodicity of information sampling and

dissemination.

In this section, we illustrate the use of the Lab4WS Testbed presenting a case study in

which we compare the four classes of WAN load balancing mechanisms in a SOA (Service

Oriented Architecture) scenario. Figure 3.3 illustrates the scenario we presuppose in this

paper. In this scenario, a set of retailers firm partnerships with a big E-Commerce enter-

prise to outsource the application logic of their e-store Web sites. Each e-store is visited

by a great number of end customers, and accesses the E-Commerce enterprise services via

Web Services. The E-Commerce enterprise needs to distribute the load incoming from

the e-stores among its geographically distributed replicas of servers.

Figure 3.3: Presupposed scenario.

3.4.1 Methodology

For these experiments, our testbed was deployed on the Schooner2 network testbed.

Schooner is a user-configurable lab environment that allows users to model and emu-

2https://www.schooner.wail.wisc.edu/
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late network topologies on a cluster, varying parameters such as latency and bandwidth.

We ran the experiments using 4 TPC-W Web Service replicas and 9 machines running

Emulated Clients with a load equivalent to 245 requests/second. The load was distributed

among the Emulated Clients using the pure Zipf distribution (x = 1.0), that give us a high

unbalanced workload. Figure 3.4 shows the topology of the emulated network, on which

the testbed was deployed. All machines were Pentium 4, 3GHz, with 4GB of memory. A

latency of 100 ms was introduced into the links between clients and proxies, to emulate a

wide area network latency.

Figure 3.4: Experiment topology.

In order to evaluate the different load balancing mechanisms, we adopted three main

metrics: the maximum system queue length, the response time observed by the clients,

and the throughput, also observed by the clients. The maximum system queue length is

the largest number of requests waiting to be responded on a service replica, observed at

a given instant, among all service replicas. If one plots the cumulative frequency of the

maximum system queue length, it is possible to infer the fraction of time in which at least

one of the replicas had its queue length larger than a certain value.

If the incoming load exceeds the service replica capacity, the response rate becomes

lower than the request rate and the incoming requests tend to accumulate at the server.

Thus, the request queue grows. Since the requests take longer to be served, the response

times observed by the client increase, and the system throughput goes down.

3.4.2 Experimental Results

In our experiments we compared four load balancing mechanisms (DNS Least Loaded,

Dispatcher Least Loaded, Server-side HTTP Redirection using Round Robin, and Client
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Best Last) with a uniform distribution, which represents the “ideal” load balancing. In

these experiments we used the DNS TTL=60s and interval for load information dissemi-

nation of 1s (for Least Loaded mechanisms). In the HTTP Redirection mechanism, the

adopted threshold was a queue length of 100. Load was generated using Zipf distribution

with x = 1.0.

Figure 3.5 shows the cumulative frequency of the maximum system queue length for

the experiments. The Server Redirection and Client Best Last mechanisms presented

good performances, showing maximum system queue length close to the uniform distri-

bution. The other two, which use the least loaded policy, were not effective, showing high

maximum system queue lengths.

Figure 3.5: Cumulative frequency of the maximum system queue length.

The response times and throughputs obtained in experiments reflected the results of

the maximum system queue length measurement. Figures 3.6 and 3.7 show the cumulative

frequency of response times for getBook and subjectSearch operations, respectively. The

former, returns the details of one item of the book store, and the later performs a search

for items by the subject in the book store. The DNS Least Loaded and the Dispatcher

Least Loaded mechanisms presented higher response times.
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Figure 3.6: Cumulative frequency of response times (getBook operation).

Figure 3.7: Cumulative frequency of response times (subjectSearch operation).
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Figure 3.8 compares the throughput of the different mechanisms. Again, while the

results obtained by the Server Redirection and the Client Best Last were close to the

uniform distribution, the throughput of the DNS Least Loaded and the Dispatcher Least

Loaded mechanisms presented a significant oscillation.

Figure 3.8: Throughput.

The experimental results show that, for the considered scenario and parameters set-

tings, Client Best-Last and Server-side Redirection performed very well, presenting res-

ponse times and throughput close to the ideal distribution. Otherwise, the two me-

chanisms that used the server utilization information (DNS-based Least Loaded and

Dispatcher-based Least Loaded) presented the worst performances. We believe that a

main reason for this result was the time interval between server utilization information

updates, during which, the load balancing mechanism may select the same server replica

using an outdated information. It is important to remember that the two mechanisms

have intrinsic drawbacks: the low control of the DNS and the dispatcher bottleneck.
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3.5 Related Work

Many works have addressed the problem of replication of Web services, e.g. [95, 79, 36, 68].

The papers [95], and [79] present frameworks based on active replication. In these fra-

meworks, client requests are intercepted by a set of proxies that rely on a group commu-

nication middleware to deliver the requests to all replicas in the same order. Once all

replicas process the requests in the same order, the consistence among them is preserved.

The authors of [36] and [68] propose solutions based on passive replication. In these solu-

tions, client requests are sent to a unique primary replica, which propagates the updates

to the other replicas. If the primary replica crashes, one of the secondary ones becomes

the new primary.

The load balancing for distributed Web servers has also been studied by several re-

searchers, e.g. [24, 20, 17, 54, 26, 56]. The works [24] and [20] present DNS-based load

balancing mechanisms. The considered policies include examples that use information of

server utilization, load information from client domains, and the size of the requested do-

cuments, in decision making. The paper [17] explores the use of server-side redirection in

the load balancing mechanisms. It presents a study about the combination of DNS-based

policies and redirection schemes that uses centralized or distributed control on basis of

global or local state information. Liu and Lu [54] propose a solution based on a centrali-

zed dispatcher that redirects client requests to the server with better response times. The

papers [26] and [56] present comparisons of client-based load balancing mechanisms.

In general, most of works either have used simulations or have performed the experi-

ments on LANs, not focusing on WAN issues. We have verified that the works that have

addressed the replication of Web services did not focus on popular Web applications, such

as E-Commerce applications. We also realized that most authors who have proposed or

analyzed load balancing solutions, have focused on static content applications and have

mainly focused their works on DNS-based, Server redirection, or client-based approaches.

Our testbed aims to facilitate the research on replicated/distributed Web services. Our

users have the flexibility to adapt the scale of the experiments deploying the testbed on

emulated networks or real WANs, according to their needs (and available resources). The

architecture of our testbed was designed to accept new replication and/or load balancing

solutions. The users can develop new Functionality Components (see Section 3.3.2) and

deploy them on the testbed in a friendly way.

3.6 Conclusion

In this paper, we have presented Lab4WS a testbed for web services that contributes to the

reduction of the difficulties associated with assessment of replication and load balancing
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solutions for Web applications. Indeed, Lab4WS can be used for the assessment of other

Web application mechanisms, e.g., caching mechanisms. In contrast with previous work,

our research focus on a benchmark Web application, an E-Commerce Web service.

To test the utility of our approach we present an experimental assessment of four

classes of load balancing mechanisms. The results evidence the flexibility and usefulness

of our testbed whose tools have eased the building, deployment, and execution of the load

balancing experiments.

Future work includes the combined evaluation of different compositions of replication

and load balancing mechanisms, the study of efficient solutions to measure and distribute

load between heterogeneous Web server replicas, and the introduction of dependability

measures.





Caṕıtulo 4

DNS-based Load Balancing for Web

Services

4.1 Introduction

With the increasing adoption of SOA (Service-Oriented Architecture), a new scenario

arises, where highly accessed web applications are deployed as web services and clients

are not web browsers accessing a web site, but other enterprises using the services of other

providers.

This new kind of scenario may require higher levels of web service dependability be-

cause of the QoS contracted by the service consumers. Thus, providers replicate their

applications in clusters geographically distributed linked via the Internet for the sake of

fault-tolerance and performance. A key issue for good performance in these environments

is the efficiency of the load balancing mechanism used to distribute client requests among

the replicated services.

This work revisits the research on DNS-based load balancing mechanisms for geo-

graphically replicated web services. In this kind of load balancing solution, the Authori-

tative DNS (ADNS) of the distributed Web service performs the role of the client request

scheduler, redirecting the clients to one of the server replicas, according to some load

distribution policy. Differently from previous works, that considered the simple browser-

server scenario, in our work we consider a SOA scenario.

It is known that large Internet corporations – e.g. Google [11] and Akamai [70, 88] –

use DNS-based load balancing mechanisms. These mechanisms benefit from the existing

DNS infrastructure, providing transparency for the Web clients. However, this kind of

strategy has a main limitation: the low control of the ADNS over the load balancing

caused by the DNS caching system, that prevents name resolution queries to reach the

ADNS.

39
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The main contribution of this paper is the proposal of a new DNS-based load balan-

cing mechanism that uses client load information in order to better distribute the load

among the replicated servers – the Current Relative Minimum Load (CRML). Besides,

the mechanism reduces the negative effects of the DNS caching over the load balancing

through the cooperation of the ADNS and the servers.

We also present the evaluation of our load balancing policy over an experimental test-

bed implemented on basis of the TPC-W [91], a well accepted E-Commerce benchmark.

The experiments show that the CRML policy behaved as good as other policies in the

scenario in which the ADNS had full control of the name resolution queries and behaved

better than the others in a scenario where the ADNS had partial control.

The remainder of this text is organized as follows. Section 4.2 provides an overview

of the DNS system and the DNS-based load balancing mechanisms. Section 4.3 presents

related works. In Section 4.4 we describe our new load balancing mechanism. Section

4.5 presents the testbed used for the evaluation of our policy and Section 4.6 shows the

experimental results. Section 4.7 concludes the paper with our final comments and future

work.

4.2 Background

In the DNS-based load balancing mechanisms, the authoritative nameserver of the dis-

tributed Web server performs the role of the client request scheduler. When it receives a

request for URL resolution, it replies the IP address of one of the server nodes, according

to some load distribution policy.

The main advantage of this kind of load balancing mechanism is that it benefits from

the existing DNS infrastructure. This makes these mechanisms immediately deployable

in today’s Internet [70].

Unfortunately, a limitation of DNS-based load balancing mechanisms is the weak

control of the ADNS over the load balancing, caused by the DNS caching, that prevents

a portion of DNS queries to reach the ADNS.

The simplest DNS-based load balancing mechanism is the Round Robin (RR) policy.

In this policy, when a request for name resolution arrives at the ADNS, it responds with

the address of the next replica of its list, in a rotative way. More sophisticated approaches

apply information from server node utilization and/or client domain information to select

a server replica.
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4.3 Related Work

The use of information about server node utilization in DNS-based load balancing me-

chanisms is exemplified in [25, 96, 60]. In these works, an agent monitors the state of

the servers and reports this information to the ADNS. When a name resolution query

arrives, the ADNS uses the utilization information of the server nodes to assign one of

the replicas to the client. Many kinds of information can be used in the ADNS decision,

such as request queue length, CPU, network, or memory usage.

There are two types of client domain information that can be used in the load ba-

lancing: client proximity and client domain load. In the first case, the ADNS tries to

assign the nearest server to the client [11, 70, 88]. A main concern in this kind of load

balancing mechanism is to estimate the proximity between clients and servers. Since the

ADNS does not have information about the client host, a solution for this problem is to

assume that clients are located near to their local nameservers and estimate the distance

between servers and local nameservers.

The capacity of estimating the load generated by client domains may be very useful

for load balancing mechanisms. This information allows the ADNS to treat differently

domains that generate high request rates (hot domains) from the others (cold domains).

The works [25], [24], and [20] present promising results using information about client

domain load for: (i) avoiding the assignment of hot domains to the same servers; (ii)

estimating the real load of each server; and/or (iii) applying different TTLs for name

resolutions addressed to hot and cold domains.

In this work, we present a new DNS-based load balancing mechanism that combines

information from clients and servers to alleviate the effects of the DNS caching on the

load balancing.

4.4 The CRML Policy

This section presents our proposed load balancing policy, the Current Relative Minimum

Load (CRML).

4.4.1 Rationale

The idea for the algorithm was motivated by the analysis of the three load balancing

policies described in [25, 24]. Here is a summary of them:

• Least Utilized Node (LUN): the ADNS assigns a request to the less utilized node,

based on the most recent server load information;
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• Two Tier Round Robin (RR2): the ADNS divides client domains into two groups,

hot and cold domains. Hot domains are those that generate high number of requests.

The policy applies the round robin strategy separately to each group, trying to avoid the

assignment of requests proceeding from hot domains to the same server nodes;

• Minimum Residual Load (MRL): the ADNS maintains a table containing all the

assignments and their times of occurrence. Based on this table and on estimates of the

request rate of each client domain, the policy calculates the load of each web server replica

and assigns an incoming name resolution request to the least loaded one;

A deficiency of LUN is that the information used by the algorithm in decision making

is often outdated. This happens because the algorithm considers only the last utilization

information received from the servers, however, the state of the servers may have changed

at the moment of a new assignment. In order to deal with this deficiency it should be

necessary to make decisions based not only on the last utilization information but also

considering the assignments performed after this information has arrived.

In our experiments, the RR2 policy presented a significative improvement in compa-

rison to RR. This result shows us that to handle differently hot and cold domains is a

good strategy. A deficiency of RR2 is that, even if a server is overloaded, the algorithm

continues to assign new name resolution requests to that server because of the round robin

strategy.

The MRL works quite fine because of its ability of estimating the total load of the

servers based on previous name resolution assignments. Nevertheless, if the control of

the ADNS decreases, by the reason of the caching of intermediary DNS servers, the MRL

assignment table becomes incomplete and leads the ADNS to make wrong decisions.

Moreover, if the number of clients is very high, it could be very expensive to maintain the

assignment table.

4.4.2 Policy Description

In the CRML policy, we follow the hypothesis that the distribution of hot domains among

the server replicas dictates the success of the load balancing mechanism. Thus, as well

as RR2, the CRML policy divides the clients into two groups, hot and cold domains.

Cold domains are distributed among the server replicas using the ordinary round robin

strategy.

In order to better distribute the load generated by hot domains, the ADNS maintains

an assignment table containing the assignments of servers to hot domains and their time

of occurrence. Note that the set of assignments in this table is potentially incomplete,

because many clients might have received name resolutions from intermediary DNS ser-

vers. Hence, the ADNS cooperates with the servers to compensate the effect of the DNS
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caching. Each server tracks the current set of hot domains from which it is receiving

requests and report this information to the ADNS. Besides, servers also report estimates

of the load (request rates) that hot domains are generating. Combining the information

of the assignment table and the information proceeding from the servers, the ADNS can

estimate the request rate each server is receiving from hot domains.

Let S be the set of web servers; let li(a) be the load generated by the assignment a

to the server i; let AKi be the set of assignments to the server i, known by the ADNS,

and whose TTL has not expired; and let AHi be the assignments reported by the server

i. When the ADNS receives a name resolution request from a hot client it computes:

CRML = min
i∈S

{ ∑
a∈{AKi∪AHi}

li(a)

}

and assigns it to the the corresponding server.

The efficiency of the CRML depends on how the set of assignments that the ADNS

knows ({AKi ∪ AHi}) is close to the reality. The ADNS knowledge is limited by the

staleness of the information reported by the servers. The last sets of assignments (AHi)

received from the servers may lack assignments that were established after the information

was sent and may contain assignments that are not valid anymore.

In a certain limit, the use of the ADNS assignment table reduces the staleness of the

server-side information. Another way to reduce the effects of stale server-side information

is to exclude any assignment of the client that is requesting a name-resolution from the

CRML calculation. Previous assignments related to this client is obviously not valid

anymore, since it is requesting a new one.

Since the assignment table of the CRML does not store the state of all clients, only

the states of hot clients, the cost for maintaining the table is smaller than using MRL.

4.4.3 Software Architecture

This section presents the software architecture that supports the proposed load balancing

policy. The architecture is illustrated in Figure 4.1.

In this architecture, the server replicas are composed of two modules: (i) the web

server module, that processes the incoming HTTP requests, and (ii) the monitor module,

that collects information about hot client domains and reports it to the ADNS.

The ADNS is a DNS server extended with two modules, the domain mapper and the

scheduler. The former is responsible for identifying if an incoming request comes from a

hot or a cold domain. The latter uses the information reported by the server replicas and

the information stored in the DNS assignment table to decide the better replica to which

redirect a client.
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Figure 4.1: CRML Architecture.

4.5 Experimental Testbed

In order to evaluate our load balancing mechanism, we implemented an experimental

testbed, the Lab4WS (Lab for Web Services). This section presents this testbed. More

details about the Lab4WS Testbed can be found in [65].

The testbed includes the implementation of a SOAP Web service based on the TPC-

W benchmark [91], a transactional benchmark for E-Commerce web sites that is well

accepted by the research community. The service consists of a set of 20 operations that

allow clients to search and buy products. A proxy placed in front of each service replica

collects client information and reports to the DNS the list of hot clients that are accessing

the replica and the estimative of load generated by those clients.

The load generation of our testbed is performed by a set of client emulators. Each

load generator emulates the load of an E-Commerce Web site that serves an entire Web

domain and generates requests to the TPC-W Web Service. The generated load follows

the TPC-W specification, which specifies three kinds of workloads that vary according to

the percentage of read and write operations. As in previous works – e.g. [24] – the load

generation is divided between different clients according to the Zipf’s distribution, where

the probability of a client to belong to the ith domain is proportional to 1/ix. The testbed

user can vary the skewness of the distribution changing the exponent x of the function.

This solution was motivated by previous works that demonstrated that if one ranks the

popularity of client domains by the frequency of their accesses to a Web site, the size of

each domain is a function with a big head and a very long tail.

The testbed also contains a DNS emulator that materializes the ADNS of the web

system. This emulator allows the testbed user to deploy new load balancing policies

in a friendly way. The effect of the DNS caching is implemented as a mechanism that

controls the percentage of name resolution requests that reach the ADNS. The testbed user

can define this percentage. The client emulators randomly decide what name resolution
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requests are sent to the ADNS. When a name resolution request is not sent to the ADNS,

the client emulator reuses the last name resolution it received, emulating a caching effect.

4.6 CRML Evaluation

In our experiments, we consider a scenario in which a set of retailers form partnerships

with a large E-Commerce enterprise to outsource the application logic of their e-store

Web sites. Each e-store is visited by a great number of end customers, and accesses the

E-Commerce enterprise services via Web Services. The E-Commerce enterprise needs

to distribute the load incoming from the e-stores among its geographically distributed

replicas of servers.

4.6.1 Methodology

For these experiments, our testbed was deployed on the Emulab1 network testbed. Emu-

lab is a user-configurable lab environment that allows users to model and emulate network

topologies on a cluster, varying parameters such as latency and bandwidth. We ran the

experiments using 5 TPC-W Web Service replicas and 16 machines running Emulated

Clients with a load equivalent to 300 requests/second (75 requests/second for each se-

condary replica). All machines were Pentium Xeon 64, 3GHz, with 2GB of memory. A

latency of 100 ms was introduced into the links between the machines, to emulate a wide

area network latency.

In order to evaluate the different load balancing mechanisms, we adopted two main

metrics: the maximum system queue length and the response time observed by the cli-

ents. The maximum system queue length is the largest number of requests waiting to be

answered on a service replica, observed at a given instant, among all service replicas.

If the incoming load exceeds the service replica capacity, the response rate becomes

lower than the request rate and the incoming requests tend to accumulate at the server.

Thus, the request queue grows. Since the requests take longer to be served, the response

times observed by the client increase, and the system throughput goes down.

4.6.2 Experimental Results

We have evaluated the CRML policy on two scenarios. In the first, we compare five load

balancing mechanisms (RR, LUN, MRL, RR2, and CRML) with a uniform distribution,

which represents the “ideal” load balancing, assuming that the ADNS has total control

over the name resolution requests. In the second scenario, we compare MRL, RR2, and

1https://www.emulab.net/
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CRML, which presented the better performances in the first scenario, assuming that only

30% of the name resolution requests reach the ADNS.

In these experiments we used the DNS TTL=60s and interval for server information

dissemination of 10s. The threshold adopted to identify hot clients was a load equal to 4

requests/second for MRL and CRML, and a load equal to 10 requests/second for RR2.

Load was generated using Zipf distribution with x = 1.0.

Figure 4.2(a) shows the cumulative frequency of the maximum system queue length

for the first scenario. The MRL and CRML mechanisms presented good performances,

showing maximum system queue lengths close to the uniform distribution. This result

was expected because in this scenario, where the ADNS has full control over the name

resolution requests, these two policies are able to compute the state of the servers with a

high precision. The RR2 did not perform as good as CRML and MRL, but its performance

was better than RR, showing that the use of client load information improved the round

robin strategy. The LUN policy presented the worst performance, showing that the simple

use of information about server utilization is not effective for load balancing.

The response times obtained in the experiments of the first scenario reflected the results

of the maximum system queue length measurement. Figure 4.2(b) shows the cumulative

frequency of response times for the subjectSearch operation, which performs a search

for items by the subject in the book store. While, using CRML and MRL, 95% of the

operation requests were answered in less then 3s, using RR2, about 25% of the requests

were answered in more than 3s. Using RR, about 35% of the operation requests were

answered in at least 3s, and, using LUN, more than 80% of the requests were answered

in at least 3s.

The results obtained in the experiments of the second scenario are shown in Figure 4.3.

As expected, due to the low control of the ADNS, the RR2 and MRL policies presented

worse results than in the first scenario. In more than 50% of the time, these policies

showed maximum system lengths larger than 1500 (Figure 4.3(a)). Differently from the

others, CRML worked quite fine in the second scenario, presenting maximum system

lengths smaller than 250 in 95% of the time.

The performance of the three policies is also perceived in the response time graph

(Figure 4.3(b)). While the CRML presented response times lower than 3s in more than

95% of the requests, RR2 and MRL presented response times higher than 3s in 35% of

the requests.

The experimental results show that, in the scenario where the ADNS had full con-

trol of the name resolution queries, CRML performed as well as the best policy (MRL)

considered, presenting response times close to the ideal distribution. Moreover, CRML

presented a better performance than RR2 and MRL in the scenario where the ADNS had

partial control. This result shows that the cooperation between the ADNS and the servers
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compensated the effect of the DNS caching on the calculation of the server load states,

allowing a good load balancing.

(a) Cumulative frequency of the maximum system queue length.

(b) Cumulative frequency of response times.

Figure 4.2: Experimental results: 100% of ADNS control.
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(a) Cumulative frequency of the maximum system queue length.

(b) Cumulative frequency of response times.

Figure 4.3: Experimental results: 30% of ADNS control.
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4.7 Conclusion

In this paper, we have presented a new DNS-based load balancing policy, the CRML.

This policy combines information from clients and servers to alleviate the negative effect

of the DNS caching over the load balancing mechanism.

The experimental results showed that our load balancing policy worked as good as

other DNS-based load balancing policies in the scenario where the ADNS had full control

over name resolution requests. Furthermore, CRML outperformed RR2 and MRL in the

scenario where the ADNS control was limited.

Future work includes: (i) the evaluation of the sensitivity of our policy to different

combinations of DNS TTLs, time interval of server information propagation, and the

threshold for identifying hot domains; and (ii) the evaluation of the combination of CRML

with server redirection mechanisms and dynamic TTL policies.
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Improving the QoS of Web Services

via Client-Based Load Distribution

5.1 Introduction

The replication of a web service over geographically distributed locations can improve the

QoS perceived by its clients. An important issue in such a deployment is the efficiency of

the policy applied to distribute client requests among the replicas.

Most of the load distribution solutions proposed so far are based on mechanisms that

redirect client requests via DNS [25, 11, 70, 96, 60, 88, 62] or proxy web servers [17, 20,

74, 71]. Client-based solutions have been neglected because of their lack of transparency

to the clients (a.k.a. web browsers). However, the web is becoming the universal support

for applications that support previously unforeseen usage scenarios. For example, it is

now common to find smart clients that can generate interactions in a programmatic way

(e.g. SOA). In scenarios like this, where transparency is not an obstacle, client-based load

distribution becomes an interesting alternative.

A main advantage of this kind of solution is the fact that the client can monitor

end-to-end network latencies (response times) in a better way than the DNS and/or web

servers. In some cases, a mechanism for client-side server selection may be the only

option available. For example, a client may want to distribute their requests among a

set of equivalent web services that do not belong to the same provider. In this case,

server-side solutions are not applicable.

The client-side server selection techniques found in the literature can be divided into

two groups: those that equitably distribute the requests among the distributed web ser-

vices, and those that try to choose the best replica to which a client should send all

requests. In the latter case, the focus has been the criteria used for decision making (e.g.

latency, bandwidth, and best response time), and the way the criteria are applied (e.g.

51
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using historical data and/or dynamic probing of servers).

Although previous work has studied the efficiency of the server selection mechanisms

for a single client, they do not have assessed the effect of these mechanisms for the

whole system. In this work, we have simulated scenarios where several clients, generating

different workloads, access replicas of a web service distributed world wide. In these

simulations, we assessed server selection policies that are representative examples of the

two groups of solutions. Our experiments indicate that the two types of solutions led

the system to load-unbalanced states and, consequently, to the worsening of the response

times perceived by the clients.

With respect to this problem, we propose a new approach for client-based server

selection that adaptively assigns different selection probabilities to each server regarding

network latencies and end-to-end response times. Our results show that the proposed

strategy can achieve better response times than algorithms that eagerly try to choose the

best replica for each client.

The main contributions of this paper are: (i) the evaluation of client-based server se-

lection policies in scenarios where several clients use the same policy; and (ii) the proposal

of a new solution that outperforms existing ones by dynamically adapting the fraction of

load each client submits to each server.

The remaining of the text is organized as follows. Section 5.2 discusses related work.

Section 5.3 presents our policy. Section 5.4 describes our simulations and Section 5.5

shows the results. Finally, in Section 5.6 we present our final remarks and future work.

5.2 Related Work

Dikes et al. [34] present a comparison of 6 client-side server selection policies for the

retrieval of objects via the Internet: Random, Latency, BW, Probe, ProbeBW,

and ProbeBW2. Random selects a server randomly (equitably distributes the load).

Latency and BW select the server that offers the best historical network latency and

bandwidth, respectively. Probe probes the network latency of all servers (via ping) and

selects the first to reply. ProbeBW considers only n servers with the fastest historical

bandwidths and applies Probe to them. ProbeBW2 probes the network latency of all

servers and applies BW to the first n servers to reply. In summary, the results showed

that the policies based on dynamic network probes presented best service response times.

A similar result was presented by Conti, Gregori, and Panzieri in [28].

In the papers [26] and [27], Conti, Gregori and Lapenna compare a probe-based policy

to a parallel solution. In the parallel solution, the total amount of data to be retrieved

is divided in equal fixed-size blocks. Then, one block of data is requested to each service

replica. The authors argue that this strategy can be useful when: (i) the objects to be
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downloaded are large; (ii) the client operations are read-only; (iii) the client wants better

throughput; and (iv) the performance of the service replicas is not the bottleneck of the

system.

Mendonça et al. [56] compared 5 client-side server selection policies for SOAP web

services: Random, HTTPPing, Parallel Invocation, Best Last, and Best Median.

Random and HTTPing are equivalent to Random and Probe from [34]. In Parallel Invo-

cation, the client requests all servers in parallel and waits for the fastest response. Best

Last selects the server with the best recent response time. Best Median selects the ser-

ver with the best median response time. According to the authors, Best Last and Best

Median are the best choice in most of cases.

The main difference between our work and the previous ones is that we are concerned

with the effect of the server selection policy in scenarios where several clients use the same

policy. We show that representative examples of the policies mentioned before present

better or worse performances depending on the system condition. Therefore, we propose

a new adaptive solution that outperforms the others by producing best response times.

5.3 Adaptive Server Selection

The server selection problem can be defined as follows. Let Pi be the probability of a

client to send a request to the server i, with 1 ≤ i ≤ n and
∑n

i=1 Pi = 1. The problem is

to find Pi that offers the best QoS. As we can see, all solutions mentioned before belong

to one of the two types:

1. Pi = 1/n: Equitably distributes the load among n servers;

2.

{
Pi = 1, if i = k

Pi = 0, if i ̸= k
: Where k is selected according to some policy criterion (latency,

bandwidth, response times, etc.).

Examples of server selection policies of the first type are: Round Robin, Random, and

Parallel Invocation. The positive points of this type of policies are: (i) they are simple

and do not require the client to gather server information; and (ii) they distribute client

requests among all servers, thus reducing the possibility of server overload. Figure 5.1

(i) shows a scenario that is favorable to these policies. In this scenario, the equitable

distribution helps not to overload any server. A negative point is that, since these policies

do not consider any server information (e.g. latency, response times), they send requests

to “worst” servers with the same probability as they send them to the “best” servers.

Figure 5.1 (ii) illustrates an unfavorable scenario, where servers 3 and 4 do not have

enough capacity to serve the incoming load and, thus, become overloaded.
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Figure 5.1: Equitably distribution server selection. (i) Favorable scenario. (ii) Unfavou-
rable scenario.

The second type includes those server selection policies that use some criterion to

select the best server. The advantage of this kind of solution is that it allows the client to

perceive changes in the responsiveness of the selected server and react to these changes.

These polices can offer good performance if the aggregated workload assigned to the “best

server” does not exceed its capacity. Otherwise, the clients may start chasing for the best

server and this leads another server to become overloaded. This situation is illustrated in

Figure 5.2. In a time t1 (Figure 5.2(i)) , clients select server 1, that becomes overloaded.

Once the clients perceive the changes in the responsiveness of server 1, they select server

2 (Figure 5.2(ii)), and then, it also becomes overloaded.

Figure 5.2: Best server. (i) t1: best server overloaded. (ii) t2: Chase for the best server
effect.
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Considering the advantages and problems of these two types of solution, we propose

a new approach that dynamically adjusts Pi in order to minimize response times by

avoiding the overloading of the servers. Our hypothesis is simple: if clients cooperatively

balance the load of the system by distributing requests in a smart way, all of them can

benefit from that.

In our solution, as well as in the Probe policy ([34]), the clients probe the network

latencies of the servers in a predefined time interval. Each client maintains a list of servers

that is sorted according to their network latencies. Here, we assume that, in normal

conditions, the response times of nearby servers tend to be better than the response times

of farther ones. The main idea of our solution is to find the highest selection probability

the client can assign to each server, giving higher priorities to the nearest ones, without

overloading them. In order to accomplish this objective, we propose the heuristic described

in the following.

The pseudo-code in Figure 5.3 describes our heuristic. At the beginning of its execu-

tion, a client sets Pi = 1/n, as in the Random policy. It sends requests to the servers

according to Pi and maintains a sliding-window mean of the response times of all servers

(MRT ) updated (lines 11 to 17). Another process monitors MRT (lines 20 to 22). Whe-

never the mean of server i (MRTi) does not exceeds MRTj, i+1 ≤ j ≤ n, the probability

to select the server i is increased in a predefined amount INC (lines 27 to 30). In this

case, INC is subtracted from Pj in a direct proportion to MRTj. If MRTi > MRTj or if

a request to server i fails, then the client assumes that server i is overloaded and performs

a contention action. It decreases Pi in a predefined amount DEC, which is added to Pj in

an inverse proportion to MRTj (lines 32 to 35). DEC should be very much higher than

INC, in order to grant that, once a problem in the responsiveness of server i is detected,

the aggregated load sent to server i is reduced to less than its capacity.

It is important to note that, in our approach, clients cooperate to maintain the load

balancing of the system in a very indirect way. There are no interactions among clients

or between clients and servers to exchange load and/or state information. The only

information each client has, as in the other solutions, is the response times produced by

the servers. Using this information, a client can avoid overloading the “best” servers by

willingly sending fractions of its requests to other servers. This happens in isolation from

the other clients. However, since all clients perform in the same way, the overall system

load stands balanced. Considering that the clients send as much requests as possible

to better servers and the servers are not overloaded, the system can provide very good

response times.



56 Caṕıtulo 5. Improving the QoS of Web Services via Client-Based Load Distribution

01 Definitions:

02 S: set of servers, ordered by network latencies

03 Si: ith server

04 Pi: probability of selecting the server i

05 MRTi: mean response time of the server i

06 INC: probability increment

07 DEC: probability decrement

08 t_UPDATE: time between probability updates

09

10 #CLIENT

11 On each request:

12 SELECT server Sk, according to Pi (1 <= i <= n)

13 status <- SEND request to Sk

14 IF status == SUCCESS

15 Update MRTk

16 ELSE

17 Alarm[k] <- TRUE

18

19 #MONITOR

20 Continuously:

21 IF MRTi (1 <= i <= n-1) > MRTj (i+1 <= j <= n)

22 Alarm[i] <- TRUE

23

24 #PROBABILITY UPDATE

25 On each t_UPDATE seconds:

26 FOR i<-1:(n-1)

27 IF alarm[i] == FALSE

28 Pi <- Pi + INC

29 Subtract INC from Pj (i+1 <= j <= n)

30 in direct proportion to MRTj

31 ELSE

32 Pi <- Pi - DEC

33 Add DEC to Pj (i+1 <= j <= n)

34 in inverse proportion to MRTj

35 Alarm[i] <- FALSE

Figure 5.3: Heuristic for adaptive server selection probabilities.
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5.4 Methodology

In order to evaluate our solution, we have implemented a simulator using the CSIM for

Java1, a discrete event simulator framework. In the following, we describe how we have

simulated the web services and their clients, the topology of the simulations, and the

configuration parameters.

5.4.1 Load Generation and Web Servers

We used the PackMime Internet traffic model [15, 1] to generate HTTP traffic in our

simulations. PackMime has been obtained from a large-scale empirical study of real web

traffic and has been implemented in the ns-2 2, a well known network simulator. In order

to use the model in our simulations, we have implemented a Java version of the PackMime.

PackMime allows the generation of both HTTP/1.0 and HTTP/1.1 traffic. The inten-

sity of the traffic is controlled by the rate parameter, which is the average number of new

connections started per second. The implementation provides a set of random variable

generators that drive the traffic generation. Each random variable follows a specific dis-

tribution. The distribution families and the parameters used in PackMime are described

in [15]. In our simulations, we used the following random variables:

• PackMimeHTTPFlowArrive: interarrival time between consecutive connecti-

ons;

• PackMimeHTTPNumberPages: number of pages requested in the same con-

nection (if using HTTP/1.1);

• PackMimeHTTPObjsPerPage: number of objects embedded in a page;

• PackMimeHTTPFileSize: sizes of files (pages and objects);

• PackMimeHTTPTimeBtwnPages: gap between page requests;

• PackMimeHTTPTimeBtwnObjs: gap between object requests;

We assumed that each geographically distributed replica of the web server is composed

of a cluster of servers. Each server is simulated as a queueing system with fixed service time

of 10 ms. Thus, a cluster with k servers provides a capacity of k*100 requests/second.

The request interarrival time distribution is defined by the PackMime model [15, 1].

Figure 5.4 illustrates the workload generating 210 connections per second. Note that,

1http://www.mesquite.com/
2http://www.isi.edu/nsnam/ns/
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since each connection generates more than one HTTP request, the number of requests

per second reach peaks of 380. It is important to note that, although the service time

is fixed, the response time perceived by the clients also includes the server queue time.

Therefore, different loads do affect the entire response time.

Figure 5.4: Example of workload generated by Packmime.

In order to divide the load between different clients, we adopted a solution similar to

the one proposed by [24]. In this paper, the authors propose to divide clients (in this case,

end customers) into domains according to the Zipf’s distribution, where the probability of

a client to belong to the ith domain is proportional to 1/ix. This solution was motivated

by previous work that demonstrate that if one ranks the popularity of client domains by

the frequency of their accesses to a Web site, the size of each domain is a function with

a large head and a very long tail. In our simulation, the total aggregate load is divided

between the clients according to the Zipf’s distribution. We can also vary the skewness

of the distribution by changing the exponent x of the function.

5.4.2 Internet Latencies

We have considered a scenario with six replicas of the web server that are world wide

distributed (Figure 5.5): one in South America (S1), one in North America (N1), two in

Europe (E1 and E2), and two in Asia (A1 and A2).

We used the average of the latencies (ping RTT/2) measured on real hosts of Pla-

netLab3 in Brazil, USA, Belgium, Austria, Japan, and China, to simulate the latencies

among the replicated web servers. Table 5.1 shows the measured RTTs. We also consider

3http://www.planet-lab.org
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Table 5.1: Table of latencies among the replicas (in milliseconds).

S1 N1 E1 E2 A1

N1 89
E1 138 48
E2 140 58 18
A1 193 109 151 162
A2 272 156 114 122 68

that each replica serves a region and that the latency between a replica and a client of its

region is 10ms.

Figure 5.5: Web Server Replicas.

Although we used fixed latencies in our simulations, their magnitudes are real and

we believe that small variations that do not affect the magnitude of the latencies would

not affect our results. Since we consider the entire response time (network + service)

to make decisions in the policies, from the client’s perspective, it does not matter if the

differences in response time are caused by network latency variations or due to variable

server workload. Thus, we believe that, varying network latencies would not change the

overall results.

In order to consider the latency of the TCP protocol, we adopted the analytic model

proposed by Cardwell et al. ([18]). This work extended previous models for TCP steady-

state by deriving models for two other aspects that can dominate TCP latency: the

connection establishment three-way handshake and the TCP slow start [77]. Therefore,

the model proposed by Cardwell et al. can predict the performance of both short and

long TCP flows under varying rates of packet loss.

In practice, the TCP model estimates the time needed to transfer data from one

endpoint to another in terms of: (i) the size of the data to be transferred; (ii) the network

latency between the two endpoints; and (iii) the packet loss rate probability.
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5.4.3 Configuration

We compared our solution (AD) with two other server selection policies:

• Round Robin (RR): Each client sends requests to all servers in a rotative way;

• Best Server (BS): Each client uses RR to probe all servers. The server that presents

the best mean response time is selected. Next, the client keeps sending all requests

to the selected server until its mean response time exceeds the mean response time

of other server. In this case, the client starts probing again, in order to avoid using

out-of-date mean response times.

In order to present the flexibility of our solution, we performed our experiments con-

sidering two scenarios, one that favors BS and another that favors RR. In the first, the

total capacity of the servers was set to 1200 requests per second (rps) divided among the

servers as follows: S1 = 100 rps, N1 = 300 rps, E1 = 200 rps, E2 = 300 rps, A1 = 200

rps, and A2 = 100 rps. The clients were configured to generate approximately 72% of the

total capacity. In the second scenario, the total capacity was divided equitably among

the servers and the aggregated load was set to approximately 90% of the total capacity.

The parameters used in the heuristic are shown in Table 5.2. Note that, since DEC

needs to be sufficiently large to alleviate the load of an overloaded server, we adopted a

DEC proportional to Pi.

Table 5.2: AD Simulation Parameters.

Parameter Value Description

INC 0.01 Probability increment.
DEC 0.3Pi Probability decrement.

t UPDATE 1s Time between probability updates.
WSIZE 30 requests Window size for response time slide mean.

5.5 Results

Figure 5.6 presents the mean response times for Scenario 1. This scenario is unfavorable for

RR (Round Robin), that does not have any information about server capacity. Although

the total capacity of the system is much higher than the load, the server capacities are

heterogeneous. Two servers (A1 and E2) have capacities lower than the equitable fraction

of load distributed by RR. This leads A1 and E2 to become overloaded, making their



5.5. Results 61

queues grow faster than others queues and, consequently, affecting the system response

times.

The bad performance of RR is also the result of its lack of adaptability to the overlo-

ading of the servers. Also, RR does not benefit from the small network latencies offered

by nearby servers, because it blindly distributes the requests among all servers.

Figure 5.6: Mean response times for scenario 1.

For the sake of visualization, we replotted the mean response times of BS (Best Server)

and AD (Adaptive) in Figure 5.7. As we can see, AD presented better response times in

all simulations. In more than 85% of the simulations, AD presented mean response times

more than 25% smaller than BS. In some cases, the difference was more than 40%.

This result was expected because, although BS tries to select the server with best

response times, once the nearby server becomes overloaded, BS deviates the entire load

of the client to farther servers that are lightly loaded. Although the best server decision

is continuously re-evaluated by clients, the time it takes to change its decision is enough

to overload the current chosen server. In the same situation, AD deviates only a fraction
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of the load, keeping as much requests as possible to be served by the nearby servers.

Figure 5.7: Mean response times for scenario 1.

The results obtained in scenario 1 may suggest that server selection policies that

equitably distribute the load are useless if compared to policies that dynamically adapts

to server condition changes. However, the simulations of scenario 2 show that it is not a

general rule.

In scenario 2, the system is almost saturated – the load corresponds to 90% of the ca-

pacity. Nevertheless, since the servers have similar capacities, RR’s equitable distribution

grants that no server becomes overloaded. On the other hand, the higher load amplifies

the effect of chasing the best server implemented by BS. For this reason, BS presented

the worst performance in this scenario, with mean response times 18% larger than RR

and 48% larger than AD on the average.

Even though RR does not cause server overloading in this scenario, it still does not

benefit from the small network latencies offered by nearby servers. This makes AD to

perform better than RR, presenting mean response times more than 25% smaller than
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RR in more than 85% of the simulations.

Figure 5.8: Mean response times for scenario 2.

While the first scenario is characterized by a lightly loaded system with heterogeneous

servers, the second presents an almost saturated system with homogeneous servers. It is

clear that, in the first case, due to its adaptability to server state changes, BS performed

better than RR. In the second case, the equitable load distribution produced by RR

outperformed BS’s greedy strategy. Nevertheless, AD produced the best response times

in both scenarios. This indicates that our solution successfully adapted to the system

states while the other solutions did not. The results suggests that, in the considered

scenarios, our hypothesis is valid.

5.6 Conclusion

A main advantage of client-side server selection policies is that clients can monitor end-

to-end response times in a better way than server-side solutions. Besides, sometimes,
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client-side policies are the only option available. Most of the client-side policies proposed

so far select one server to which the client should send all requests or equitably distribute

the load among all of them.

Our simulations have shown that in scenarios where several clients use the same ser-

ver selection policy, these two types of solution can lead to load-unbalanced states and,

consequently, to the worsening of response times.

In this paper, we argue that if clients collaborate in order to balance server load

they can obtain better response times. Our solution adaptively changes the fraction of

load each client sends to each server giving higher priorities to nearby servers. Although

this less greedy strategy of sending fractions of the load to worser servers seems to be

counterintuitive, our experiments have shown that our solution overcomes the two types

of policies proposed so far, even in scenarios that favors one type or another.

Future work include: (i) the evaluation of the sensitivity of our solution through an

even more comprehensive set of simulations; and (ii) the deployment and evaluation of

our solution in a real testbed [65].
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Load Balancing for Internet

Distributed Services using Limited

Redirection Rates

6.1 Introduction

The web has become the universal support for applications. Increasingly, heavy loa-

ded applications, that place extra demand on servers and network resources, are being

deployed in clusters located at geographically distributed datacenters linked via the in-

ternet. Content Delivery Networks (CDNs) and cloud computing make this reality even

more evident.

A key issue for good performance in these environments is the efficiency of the load

balancing mechanism used to distribute client requests among the replicated services.

The load balancing solution allows service providers to make better use of resources and

soften the need of over-provision. Besides, even when the provision of extra servers is

possible, load balancing can help to tolerate server overload until the system can be

adjusted. Server overload can be caused, for example, by abrupt load peaks or by partial

failures that reduce the capacity of the web server hardware. Just to mention a concrete

example, Google adopts specialized load balancing mechanisms at four different levels of

the software (hardware) architecture that supports its search engine [11].

There are four classes of load balancing mechanisms for geographically distributed web

services [16]: DNS-based ([24, 96, 60, 62]), server-based ([17, 20, 74, 71]), dispatcher-based

[54], and client-based ([26, 56]). In the DNS-based solutions, the Authoritative DNS

(ADNS) of the replicated web server performs the role of the client request scheduler.

When it receives a request for a URL resolution, it replies the IP address of one of

the server nodes, according to some load balancing policy. In server-based solution, the

65
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load balancing policy runs in the server side. Any overloaded server replica can redirect

requests to other replicas. In dispatcher-based solutions, a host placed between clients

and server replicas receives all requests and forwards them to the appropriate replica. In

the client-side solutions, the client runs the distribution load policy and decides to which

server it sends the requests. An excellent discussion on load management strategies for

large scale web services can be found in [14].

In this paper we focus on server-based load balancing solutions. So far, most of

proposals found in the literature aim to minimize the web service response times by

redirecting requests to an optimal remote server that is chosen in terms of communication

latency and workload. To the best knowledge of the authors, none of the existing proposals

focus on techniques that prevent redirected requests to overload the remote server. This

situation can happen if various overloaded servers redirect requests to the same server or

if the load of a remote server suffers an abrupt change. Our solution avoids this problem

by combining a new strategy based on limited rates of request redirection and a heuristic

that helps web servers to tolerate overload caused by abrupt load peaks and/or partial

failures.

The main contributions of our work are:

• A protocol for limited redirection rates that avoids the overloading of the remote

servers;

• A middleware that supports this protocol and minimizes the response times of re-

directed requests;

• A heuristic based on the protocol that tolerates abrupt load changes.

We have evaluated our solution through a set of simulations that covered a variety

of scenarios. In order to perform the simulations, we have built a simulator based on

realistic internet models ([15, 1, 18]).

The remainder of this text is organized as follows. Section 6.2 presents related works.

In Section 6.3, we present our new load balancing solution. Section 6.4 describes our si-

mulations and shows the results. Section 6.5 concludes the paper with our final comments

and future work.

6.2 Related Work

The server-based load balancing for distributed web services has been studied by many

researchers. Cardellini and Colajanni [17] compare the performance of centralized versus

distributed control algorithms for the activation of the load balancing mechanisms, for the

localization of the destination servers, and for the selection of the requests to be redirected.
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The study concludes that there is a trade-off between the slightly better performance of

centralized algorithms and the lower complexity of distributed ones.

Chatterjee et al. [20] present a load balancing solution that redirects requests based

on server capacity, server load, and size of the requested documents. The status of all

servers is centralized by a single entity. This global information is used by overloaded

replicas to redirect requests to the lightly loaded one.

The solution proposed by Ranjan and Knightly [74] considers both CPU load and

network latencies to reduce the system response time. If a request arrives at web server k,

then the objective is to dispatch the request to a web server j satisfying min(2∆kj + Tj),

where ∆kj is the network latency between k and j and Tj is the estimate of service time

in j.

Pathan, Vecchiola, and Buyya [71] propose a solution similar to the one proposed by

Ranjan and Knightly [74]. The main difference is that, in the former, when a request is

redirected, the end client needs to resend the request to the other server replica. In the

latter, the redirecting replica intermediates the communication between the end client

and the other replica by forwarding the request. Therefore, the solution proposed in [71]

needs to estimate the network latency among end clients and server replicas, which is

much more difficult than estimate the network latency among server replicas.

Our solution also tries to minimize the system response time considering the load

status of the web servers and network latencies, like [74] and [71]. The innovation of

or work is twofold: (i) we propose a remote resource reservation mechanism that avoids

overloaded web servers to overload lightly loaded web servers, and (ii) a heuristic based

on this mechanism that tolerates abrupt load peaks.

6.3 Limited Redirection Rates

6.3.1 Overview

The response time of a request redirected by a web server to a remote one is affected by

two factors: the latency between the web servers, and the time the remote web server

takes to process the request. Intuitively, the best choice would be to redirect requests to

the closest lightly loaded web server. However, this intuitive policy may be very inefficient

if the redirections overload the remote web server. For example, consider the situation

illustrated in Figure 6.1. In this situation there are three web servers with the same

capacity, let us say, 100 rps (requests per second). The gray bars represent the average

load incoming to each server over the time. In t1, the web server A becomes overloaded

and needs to redirect an average of 40 rps. Note that, although, in this example, the

overload is caused by an abrupt load peak, it could also have been caused by a partial
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failure of server A, which would reduce its capacity.

Let us consider that B is the closest lightly loaded web server. In time t2, A starts

redirecting 40 rps to B, which becomes overloaded and multicasts an alarm message

informing that it is overloaded (t3). Once A receives this alarm, it stops redirecting

requests to B and starts redirecting to the next closest lightly loaded web server (t4), i.e.,

C. Then, C becomes overloaded.

Figure 6.1: Intuitive policy.

The situation illustrated in Figure 6.1 happens because the web servers share only the

binary information “overloaded or not”. This policy can be improved if the web servers

also inform the capacity they can lend to the others. In this case, the web server A could

split its exceeding load between B and C. However, even this improved policy may be

inefficient in some cases. For example, let us consider the situation in Figure 6.2. In t1,

the servers inform the capacity they can lend. Next, in t2, A becomes overloaded. It

knows the capacity of B and C and appropriately split its exceeding load between them

(t3). When D becomes overloaded (t4), it also knows the capacity of B and C, but it

does not know if another web server is already redirecting requests to B neither how much

redirected load B might be already receiving. Thus, since D’s exceeding load fits to the

last B’s capacity information, D starts redirecting to B (t5), which becomes overloaded.

Clearly, there is a trade-off between redirecting exceeding load to closest remote ser-

vers, aiming better network latencies, and sparing requests to various servers, aiming to

avoid overload them. Our solution tries to balance this trade-off to minimize the service

response times. In our solution, an overloaded web server redirects its exceeding load to

the set of closest lightly loaded web servers that, together, are able to serve its demand.

The main idea of our solution is a protocol that imposes a maximum limit of requests

that each overloaded server is allowed to redirect to each lightly loaded web server. The

limits are defined considering information about the exceeding capacity of lightly loaded

web servers and about the network latencies among the servers. This protocol, which we
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Figure 6.2: Improved intuitive policy.

call LRR (Limited Redirection Rate), avoids the situation illustrated in Figure 6.2.

Figure 6.3 exemplifies the operation of our load balancing solution. Again, let us

consider that A and D are overloaded web servers and B is the closest lightly loaded web

server for both. Supposing that A becomes overloaded first, the load balancing happens

in four steps. First, A successfully obtains permission to redirect up to 30 rps requests to

B (step 1). Since the capacity of B is not enough to its demand, A also obtains permission

to redirect up to 10 rps to C (step 2). When D becomes overloaded, it tries to obtain

permission to redirect requests to B, but B has already compromised its entire capacity

(with A) and refuses D’s request (step 3). Thus, D obtains permission to redirect up to

20 rps to C (step 4). The large arrows indicate the average load, in requests per second,

each web server is receiving or redirecting after step 4.

Figure 6.3: Limited Redirection Rate.
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Our load balancing solution is composed of two parts, a middleware for the mana-

gement that supports the protocol (Section 6.3.2), and a load balancing heuristic (Sec-

tion 6.3.3).

6.3.2 Virtual Web Resource

In this paper we propose the Virtual Web Resource (VWR), a middleware that allows

web servers to share their resources. Figure 6.4 illustrates the VWR concept.

In VWR, web servers can assume two different states: providers and consumers. Pro-

viders are lightly loaded web servers that can share resources with other web servers.

Consumers are overloaded web servers that consume resources shared by providers.

The VWR abstracts the location of the providers to the consumers, which see the

resources shared by the providers as a single pool of remote resources. Consumers can

allocate the portion of the VWR they need and then use it to serve the load they are not

able to serve using local resources.

The VWR manages the amount of resources provided and consumed by remote web

servers. The load submitted to the VWR by a consumer is divided among the minimum

number of closest providers (supposedly) able to serve the demand, aiming to minimize

the network latencies.

The middleware that implements VWR is composed of two software elements, the

VWRMaster and the VWRNodes. The VWRMaster is the core of the middleware. It is

responsible for allocating virtual resources to the consumers and also for reallocating vir-

tual resources when the status of providers changes. In order to perform this, it maintains

information about: the status of the web servers, the network latencies among the web

servers, the amount of resources shared by each provider, the amount of virtual resour-

ces allocated to each consumer, and the mapping between virtual resources and physical

resources (providers).

It is important to emphasize that, in the VWR, when a consumer allocates an amount

of virtual resources, there are no guarantee that the providers will serve the redirected

requests in the expected time. The redirection rate limits are defined on basis of estimates

of the provider’s free capacity. Since the web workload is very dynamic, the provider

condition may abruptly change. In this case, the redirections arriving to the provider

will be served in a best effort way. Although this lack of guarantee seems worthless, the

middleware ensures that the aggregate redirected load does not exceed the estimate free

capacity of the providers, and, as we will show, this fact allows us to achieve good results.

The VWRNodes are software agents that run on every web server. They monitor

the current load of the web server and communicate with the VWRMaster to offer lo-

cal resources or to allocate virtual resources. The VWRNode also monitors the network
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Figure 6.4: Virtual web Resource.

latencies between the local web server and all remote web servers and reports this in-

formation to the VWRMaster. The VWRMaster abstraction can be implemented as a

simple replicated table using a total-order broadcast middleware [30].

Figure 6.5 shows the interaction between a consumer and the VWR middleware. The

consumer web server communicates with the local VWRNode to allocate virtual resources

and to submit load to them. In order to allocate the virtual resources, the VWRNode

interacts with the VWRMaster through the following messages:

• ReportLatencyTable: sent by VWRNodes to report the estimate of latencies

among the local web server and the others;

• AcquireVirtualResources: sent by VWRNodes to request the allocation of an

amount of virtual resources (in requests per second) or to modify the amount already

allocated. If the invoking VWRNode is a provider, the VWRMaster sets the state

of the VWRNode as “consumer” and reallocates virtual resources for all consumers

that were consuming resources of this provider. Otherwise, if the invoking VWR-

Node is a consumer updating its value amount of virtual resources, the VWRMaster

reallocates the virtual resources to it;

• ProviderList: sent by VWRMaster to inform the list of providers that will provide

the virtual resources to the VWRNode. This list also informs the maximum load

that each provider is supposed to serve. The list is chosen regarding the latencies

from providers to the consumer and is ordered by the network latency. In order

to minimize response times, the VWRNode should use all capacity of the closest

provider before submit load to the next one.

At the consumer side, the VWRNode also acts as a flow controller, not allowing the

consumer to submit to the VWR more requests than the maximum limit.
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Figure 6.5: Interaction between a consumer and the middleware.

Figure 6.6: Interaction between a provider and the middleware.

Figure 6.6 shows the interaction between a provider and the VWR middleware. The

provider web server communicates with the local VWRNode to announce resources that

can be shared. The VWRNode receives requests incoming from consumers and delivers

them to the web server. In order to offer resources to be shared, the VWRnode interacts

with the VWRMaster through the following message:

• ReportResourceAvailability: sent by VWRNodes to announce the amount of

resources (in requests per second) they are able to share or to update the value

amount already shared. If the invoking VWRNode is a consumer, the VWRMaster

sets the state of the VWRNode as “provider” and disposes any virtual resource

it has allocated. Otherwise, if the invoking VWRNode is a provider reducing the

amount of resources it is sharing, the VWRMaster reallocates virtual resources for

all consumers that share resources of this provider;

The message cost of our solution varies from 2 to N messages per workload threshold

violating change (N = number of geographically distributed web servers). Once the

resources are assigned to the consumer, subsequent redirections do not involve any other

control messages. This cost does not differ substantially from the cost of any other

load distribution solution that relies on global state information. In short, our message

overhead is low.
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IF Queue <= th_queue, THEN

Deliver request

RETURN

ELSE

Try to send the request to VWR

IF request was sent to VWR, RETURN

ENDIF

Deliver request

RETURN

Figure 6.7: Load Balancing Heuristic.

6.3.3 Load Balancing Heuristics

The VWR middleware solves the problem of choosing the remote web servers to which

redirect requests. It needs to be combined with some policy that decides when to redirect

requests. Figure 6.7 presents a pseudo-code of the heuristic we adopted to make this

decision. The basic idea of this heuristic is trying to keep the local request queue shorter

than a threshold, without ever overloading the remote web servers. The reason for this

heuristic is simple. If a request needs to wait in a queue, it should not pay the price of a

redirection latency.

When the web server receives a request, it checks its queue. If the queue is shorter

than the threshold (th queue), the web server processes the request locally. If not, the

web server tries to submit the request to the VWR. If the request could not be sent to

the VWR, it is enqueued locally.

Another decision problem is related to the amount of remote resources that an overlo-

aded web server should allocate. This decision depends on the request rate the web server

receives. In our solution, we use a sliding average of the request rate to detect significant

load changes. The remote resource allocation is dynamically adjusted on the basis of the

average request rate.

An important issue regarding the remote resource allocation is the wide area network

latencies that delay the communication between VWRNodes and the VWRMaster. This

causes server state infomation staleness and makes the reaction to abrupt request rate

changes not fast enough.

In order to deal with this problem, we propose the use of a capacity safety margin.

Each web server must have spare resources (CPU, memory, disk, etc.) beyond the amount

needed to support its average request rate. This safety margin aims to tolerate abrupt
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Definitions:

C: web server capacity

L: Last significant average load

change

A: Last average load sample

S: Safety margin size

ST: Load sample time

SAWS: window size for load sliding

average

th_inf: Threshold for significant

load decrease

th_sup: Threshold for significant load

increase

On each ST seconds:

A = average request rate of SAWS seconds

IF (A < (L-th_inf)) or

(A >= (L+th_sup)), THEN

L = A

ENDIF

IF (L+S)>C, THEN

Offer (C-(L+S))

ELSE

Allocate ((L+S)-C)

ENDIF

RETURN

Figure 6.8: Remote resource allocation heuristic.

peaks of load until the remote resource allocation can be adjusted. For example, suppose

that a web server with capacity C rps and capacity safety margin S rps is receiving an

average load of L rps. If (L+S) < C, the web server can share (C − (L+S)) rps. If not,

the web server has to allocate ((L+ S)− C) from remote resources. The pseudo-code in

Figure 6.8 describes the heuristic used to manage the remote resource allocation.

6.4 Evaluation

In order to evaluate our solution, we have implemented a simulator using the CSIM for

Java1, a discrete event simulator framework. Sections 6.4.1 to 6.4.3 detail our simulations

1http://www.mesquite.com/
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and Section 6.4.4 presents the results.

6.4.1 Load Generation and Web Servers

We used the PackMime Internet traffic model [15, 1] to generate HTTP traffic in our

simulations. PackMime has been designed from a large-scale empirical study of real web

traffic and has been implemented in the ns-2 2, a well known network simulator. In order

to use the model in our simulations, we have implemented a Java version of the PackMime.

PackMime allows the generation of both HTTP/1.0 and HTTP/1.1 traffic. The inten-

sity of the traffic is controlled by the rate parameter, which is the average number of new

connections started per second. The implementation provides a set of random variable

generators that drive the traffic generation. Each random variable follows a specific dis-

tribution. The distribution families and the parameters used in PackMime are described

in [15]. In our simulations, we used the following random variables:

• PackMimeHTTPFlowArrive: interarrival time between consecutive connecti-

ons;

• PackMimeHTTPNumberPages: number of pages requested in the same con-

nection (if using HTTP/1.1);

• PackMimeHTTPObjsPerPage: number of objects embedded in a page;

• PackMimeHTTPFileSize: sizes of files (pages and objects);

• PackMimeHTTPTimeBtwnPages: gap between page requests;

• PackMimeHTTPTimeBtwnObjs: gap between object requests;

We assumed that each geographically distributed replica of the web server is composed

of a cluster of servers. Each server is simulated as a queue system with fixed service time

of 10 ms. Thus, a cluster with k servers provides a capacity of k*100 requests/second. A

cluster may have a partial failure, losing up to k − 1 servers. In that case, the capacity

of the cluster is reduced in a direct proportion to the number of failures. For the sake

of simplicity, we will refer to a cluster of servers simply as a web server and represent

the partial failures as a capacity reduction. The request interarrival time distribution is

defined by the PackMime model [15, 1].

2http://www.isi.edu/nsnam/ns/
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6.4.2 Internet Latencies

We have considered a scenario with six replicas of the web server that are world wide

distributed (Figure 6.9): one in South America (S1), one in North America (N1), two in

Europe (E1 and E2), and two in Asia (A1 and A2).

We used the average of the latencies measured on real hosts of PlanetLab3 in Brazil,

USA, Belgium, Austria, Japan, and China, to simulate the latencies among the replicated

web servers. Table 6.1 shows these latencies. We also consider that each replica serves a

region and that the latency between a replica and a client of its region is 10ms.

Figure 6.9: Web Server Replicas.

Table 6.1: Table of latencies among the replicas (in milliseconds).

S1 N1 E1 E2 A1
N1 89
E1 138 48
E2 140 58 18
A1 193 109 151 162
A2 272 156 114 122 68

In order to consider the latency of the TCP protocol, we adopted the analytic model

proposed by Cardwell et al. ([18]). This work extended previous models for TCP steady-

state by deriving models for two other aspects that can dominate TCP latency: the

connection establishment three-way handshake and the TCP slow start [77]. Therefore,

the model proposed by Cardwell et al can predict the performance of both short and long

TCP flows under varying rates of packet loss.

3http://www.planet-lab.org
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In practice, the TCP model estimates the time needed to transfer data from one

endpoint to another in terms of: (i) the size of the data to be transfered; (ii) the network

latency between the two endpoints; and (iii) the packet loss rate probability.

6.4.3 Configuration

We compared our solution with two other load balancing policies:

• Round Robin with Asynchronous Alarm (RR): Improves the simple round robin

policy by considering the load status of remote servers. Overloaded servers broadcast

an alarm informing their status. This way, all overloaded servers can remove each

other from their rotative list;

• Smallest Latency (SL): Overloaded servers redirect exceeding requests to the closest

lightly loaded remote server. Overloaded servers use asynchronous alarm to inform

their status.

We run the simulations on 21 variations of the scenario depicted by Figure 6.9: all

combinations of 1 overloaded server and 5 lightly loaded servers, and all combinations of 2

overloaded servers and 4 lightly loaded servers. Figure 6.10 shows the overloaded replicas

of each scenario.

Figure 6.10: Simulation scenarios: (a) 1 overloaded server. (b) 2 overloaded servers.

The load generators (PackMime) were configured to generate 210 connections per

second. The overload was induced through the simulation of a partial failure that reduced

the capacity of the servers to 200 rps. Figure 6.11 illustrates the workload generated by

one of our load generators to one of the web servers. The parameters used in the heuristics

(Figures 6.7 and 6.8) are annotated in Table 6.2.
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Figure 6.11: Example of workload generated by Packmime.

Table 6.2: LRR Simulation Parameters.

Parameter Value Description

th queue 1 request Threshold (queue size) for redirecting

a request to the VWR.

S 0.25*A rps Safety margin size.

ST 1s Load sample time.

SAWS 30s Window size for load sliding average.

th inf 0.125*A rps Threshold for significant load decrease.

th sup 0.125*A rps Threshold for significant load increase.

A: load average.

6.4.4 Results

In this section, we present the evaluation of our load balancing solution. Figure 6.12 sum-

marizes the results of the entire set of simulations. Since the histograms of response times

for all simulations presented the same distribution, we believe that the mean response

times can be used to compare the performance of the different solutions.
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Figure 6.12: Mean response times for all scenarios.

Each bar in the chart represents the mean of the mean response times of one of the load

balancing policies, in one scenario. In general terms, we can see that LRR presented mean

response times 29% smaller than RR and 31% smaller than SL. In the following we explain

important aspects of our solution by analyzing two scenarios (8 and 13 - Figure 6.10) in

detail.

We first analyse the results obtained through a simulation instance of the scenario 8,

where servers S1 and E1 suffer partial fails and become overloaded. Figures 6.13, 6.14,

and 6.15 present the histograms of the response times perceived by the clients for the

three load balancing policies. As we can see, a frequency analysis shows that while 95%

of the requests were responded in less than 0.14 s using LRR (Limited Redirection Rate),

using RR and SL, the same percentage of requests were responded in 0.28 and 0.27 s,

respectively. This indicates that LRR has provided better response times.

The meaning of the histograms of Figures 6.13, 6.14, and 6.15 is summarized by the

chart of Figure 6.16 that shows the mean response times presented by each load balancing

policy. According to the figure, the mean response time presented by LRR is 32% smaller

than SL’s and 31% smaller than RR’s. This corroborates the histogram results, indicating

that LRR presented better response times.
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Figure 6.13: Histogram of response times for scenario 8, using RR.

Figure 6.14: Histogram of response times for scenario 8, using SL.



6.4. Evaluation 81

Figure 6.15: Histogram of response times for scenario 8, using our solution.

Let us analyse the aspects that made LRR to behave better than the others in scenario

8. Table 6.3 shows the percentage of requests redirected to each server by each policy.

As we can see, RR reduces the probability of redirections to overload the remote servers,

because exceeding requests are divided among various remote servers. However, RR is

not aware of the network latencies, making far remote servers receive the same amount

of redirected requests than closer ones. This affects RR’s request response times.

In scenario 8, the closest lightly loaded servers for S1 and E1 are distinct servers (N1

and E2 respectively), thus, this scenario prevents SL from choosing the same remote server

for S1 and E1. As Table 6.3 shows, SL divided their redirections between N1 and E2,

tending to make their queues grow up. Since our protocol limits the maximum redirection

rate to each provider, LRR also sent more than 32% of redirections to A2. Thus, it avoids

overloading the remote servers.

An interesting aspect to be pointed out is that LRR has redirected a number of requests

more than twice the number of redirections achieved by the others (see Table 6.3). This is

a consequence of the heuristic that aggressively tries to maintain the server queues short.

The intuition behind this heuristic is simple: sometimes, it is better to pay the price of

the network latency than to wait in the local queue.
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Figure 6.16: Mean response times for scenario 8.

Table 6.3: Scenario 8 - Percentage of redirections.

Redirection Percentage Total

Policy S1 N1 E1 E2 A1 A2 Redir.

RR 0% 24,41% 2,35% 24,41% 24,41% 24,41% 214587

SL 0% 54,88% 0% 45,12% 0% 0% 214689

LRR 0% 42,64% 2,34% 21,88% 0,67% 32,46% 434996

Figure 6.17 shows the mean response times for scenario 13, where N1 and E2 have

partial fails and become overloaded. Again, we can see that LRR has presented response

times smaller than the other policies (36% smaller than SL’s and 29% smaller than RR’s).

Figure 6.17: Mean response times for scenario 13.
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Different from scenario 8, in scenario 13, the two overloaded servers share the same

closest lightly loaded server (E1). This fact is indifferent for RR and it works the same

way. Since LRR and SL are aware of network latencies, this scenario tends to affect their

performance.

Table 6.4 shows the percentage of requests redirected to each server by each policy in

scenario 13. As we can see, SL concentrated the redirections to E1. Eventually E1 became

overladed, making SL to redirect a small amount of requests to S1 and A2. Thanks to the

VWR protocol, LRR redirected E1, S1, and A2. This conservative mechanism prevents

overloading E1.

Table 6.4: Scenario 13 - Percentage of redirections.

Redirection Percentage Total

Policy S1 N1 E1 E2 A1 A2 Redir.

RR 24,42% 0% 24,42% 2,33% 24,42% 24,42% 210804

SL 8,14% 0% 84,05% 0% 0% 7,82% 210789

LRR 18,85% 0% 38,73% 3,76% 0% 38,65% 430581

6.5 Conclusion

Load balancing techniques can help geographically distributed web services to tolerate

server overloads. The overload can be caused by abrupt load peaks and/or partial failures

that reduce server capacity. In this paper, we have presented a new server-based load

balancing policy for worldwide distributed web servers. To the best knowledge of the

authors, none of the previous proposals have focused on techniques that prevent redirected

requests from overloading remote servers. Our solution was designed on the basis of a

protocol that limits the redirection rates, preventing such a problem and reducing response

times.

In order to evaluate our solution, we have implemented a simulator based on realistic

internet models and real internet latencies. The results obtained through a set of simu-

lations show the benefits of our solution in comparison to two other well known policies,

and justify our design decisions.

Future work includes: (i) the evaluation of more complex strategies for resource al-

location in the VWR middleware; (ii) the evaluation of the sensitivity of our solution

through an even more comprehensive set of simulations; (iii) the deployment and evalu-

ation of our solution in a real testbed [65]; and (iv) the development of a new version of

the middleware that uses linear programing to optimize the division of resources among

consumers.
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Analysis of Resource Reservation for

Web Services Load Balancing

7.1 Introduction

Applications that place extra demand on servers and network resources are increasingly

being deployed in clusters located at geographically distributed data centers linked via

the internet; the data center software and hardware is a cloud. Clouds can offer ser-

vices ranging from a very basic computing infrastructure to universal cloud-transparent

applications or services.

A key issue for the performance of cloud-based applications is the efficiency of the load

balancing mechanism used to distribute client requests among the data centers where the

distributed application has been deployed. An efficient load balancing solution allows

clouds to make better use of resources and can potentially reduce the need for resource

overprovisioning. Besides, even when the provision of extra servers is possible, load balan-

cing can help tolerate workload peaks until the system can be adjusted [8]. For example,

Google adopts specialized load balancing mechanisms at four different levels of the soft-

ware (hardware) architecture used to run its indexing and search engine [11]. Amazon,

Microsoft and other important service providers also implement their own load balancing

solutions [8].

From now on the term web server is used as a synonym for any class of geographically

distributed computing facility addressable as a single entity and where a web service has

been deployed. Thus, in the paper, a server can be anything from a single computer,

to a cluster of computers within a data center, or even to a whole data center (cloud).

It is useful to consider servers at different levels of abstraction because our solution can

then be combined with any network—traffic engineering—setup devised to interconnect

the data centers where the servers (applications) reside.

85
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In this paper we focus on server-based load balancing solutions. This kind of solution

provides a fine-grained level of control over the assignment of requests to the servers, since

all requests reach, at least, one of them. This is not the case of DNS-based1 approaches,

in which the ADNS2 does not have control over all the clients, due to the DNS caching

system. Other clear advantage of server-based solutions is that they are transparent to

the clients, unlike client-based solutions, in which the clients have to be instrumented to

implement the load balancing. A third main feature of server-based solutions is the facility

to use information about the state of the servers. Although, many solutions propose the

exchange of control information among servers and the ADNS or dispatchers, this kind

of communication is much easier to implement when it is restricted to the servers.

So far, most of the proposals found in the literature try to minimize the web service

response times by redirecting requests to an optimal remote server that is chosen solely

in terms of communication latency and workload. A problem with this kind of load

balancing solution is that they distribute the redirected load among the lightly loaded

servers through a reactive strategy. When a lightly loaded server becomes overloaded,

because the load balancing mechanism has sent to it some extra workload, it may react

to the workload increase with the creation of a workload bypass to yet another lightly

loaded server. If this reaction chain to workload surges is not fast enough, the response

times are negatively affected. Our solution avoids this problem by adopting a preventive

approach. It combines a new strategy based on reservation of remote resources with a

heuristic that helps web servers better balance their workload and tolerate load peaks.

The main contributions of our work are:

• A protocol for remote resource reservation that avoids the overloading of remote

servers;

• A heuristic associated with the remote resource reservation protocol that enables

the protocol to tolerate abrupt load changes;

• A middleware that supports the remote resource reservation protocol.

We have evaluated our solution through a large set of simulations that encompass an

exhaustive set of workload scenarios based on realistic internet traffic models [1, 15, 18].

In these simulations, we investigate and compare the performance of our solution to other

well-known approaches under varying workloads and scales. There is a set of experiments

designed specifically to assess the suitability of the proposed solution to abrupt workload

changes.

1Domain Name System.
2Authoritative Domain Name Server.
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The remainder of the text is organized as follows. Section 7.2 presents related work.

In Section 7.3, we introduce our new load balancing solution. Section 7.4 describes our

simulations setup and Section 7.5 presents the results. Section 7.6 concludes the paper

with our final comments and future work.

7.2 Related Work

There are four classes of load balancing solutions for geographically distributed web ser-

vices [16]: DNS-based, server-based, dispatcher-based [54], and client-based. In the DNS-

based solutions, ADNS of the replicated web server performs the role of the client request

scheduler. When it receives a request for a URL resolution, it replies with the IP ad-

dress of one of the server nodes, according to some load balancing policy. In server-based

solutions, as already mentioned, the load balancing policy is implemented at the server

tier. Any overloaded server replica can redirect requests to other replicas. In dispatcher-

based solutions, a host placed between clients and server replicas receives all requests and

forwards them to the appropriate replica. In the client-side solutions, the client runs the

distribution load policy and decides to which server it can redirect requests.

The papers [25, 60, 96] present DNS-based load balancing mechanisms that use infor-

mation about server utilization in the server selection. In these works, an agent monitors

the states of the servers and reports this information to the ADNS. When a name re-

solution query arrives, the ADNS uses the utilization information of the server nodes to

assign one of the replicas to the client. Many kinds of information can be used in the

ADNS decision, such as the length of the request queue, CPU, memory usage, or network

traffic.

Other DNS-based proposals use information about clients in server selection. There

are two types of client domain information that can be used in the load balancing: client

proximity (latency) and client domain load. In the first case, the ADNS tries to assign

the nearest server to the client [11, 70, 88]. A main concern in this kind of load balancing

mechanism is to estimate the proximity between clients and servers. Since the ADNS

does not have information about the client host, a solution for this problem is to assume

that clients are located near to their local nameservers and estimate the distance between

servers and local nameservers. Shaikh et al. [83] discuss the effectiveness of this solution

and propose another solution that adds a new type of resource record to the DNS, in

order to allow the ADNS to identify the client host.

The variability of request rates generated by client domains is an important issue

for load balancing mechanisms. A name resolution proceeding from a large domain will

cause a stronger impact on the Web system than a name resolution proceeding from a

small domain. Hence, the estimation of the load generated by client domains may be
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very useful for the load balancing mechanisms. This information allows the ADNS to

treat differently domains that generate high request rates (hot domains) from the others

(cold domains). The works [24], [20] and [25] present promising results using information

about client domain load for: (i) avoiding the assignment of hot domains to the same

servers; (ii) estimating the real load of each server; and/or (iii) applying different TTLs

for name resolutions destined to hot and cold domains. Following this line, [62] proposes

a new policy that combines client load information and server load information in order

to alleviate the negative effects of the DNS caching over the load balancing.

These mechanisms assume that servers collaborate with the ADNS, identifying and

reporting the hot domains. In order to perform this task, it may be necessary to cluster

the Web clients that access the same local nameserver. A name resolution affects the

whole domain under the control of the same local nameserver. Techniques for clustering

of Web clients include using prefix matching of IP addresses and name lookups to identify

the domain name of the IP addresses. Another solutions for this problem are presented

in [12, 50].

An approach used to deal with the low control of the ADNS is to complement the DNS-

based mechanism with a second level of load balancing based on server-side redirection.

In this approach, overloaded Web servers redirect incoming requests to other replicas.

The redirection approach is adopted in [17, 46, 74].

Dikes et al. [34] present a comparison of 6 client-side server selection policies for

the retrieval of objects via the Internet: Random, Latency, BW, Probe, ProbeBW, and

ProbeBW2. Random selects a server randomly (equitably distributes the load). Latency

and BW select the server that offers the best historical network latency and bandwidth,

respectively. Probe probes the network latency of all servers (via ping) and selects the first

to reply. ProbeBW considers only n servers with the fastest historical bandwidths and

applies Probe to them. ProbeBW2 probes the network latency of all servers and applies

BW to the first n servers to reply. In summary, the results showed that the policies based

on dynamic network probes presented best service response times. A similar result was

presented by Conti, Gregori, and Panzieri in [28].

In the papers [26, 27], Conti, Gregori and Lapenna compare a probe-based policy to

a parallel solution. In the parallel solution, the total amount of data to be retrieved is

divided in equal fixed-size blocks. Then, one block of data is requested to each service

replica. The authors argue that this strategy can be useful when: (i) the objects to be

downloaded are large; (ii) the client operations are read-only; (iii) the client wants better

throughput; and (iv) the performance of the service replicas is not the bottleneck of the

system.

Mendonça et al. [56] compare 5 client-side server selection policies for SOAP web

services: Random, HTTPPing, Parallel Invocation, Best Last, and Best Median. Random
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and HTTPPing are equivalent to Random and Probe from [34]. In Parallel Invocation,

the client requests all servers in parallel and waits for the fastest response. Best Last

selects the server with the best recent response time. Best Median selects the server with

the best median response time. According to the authors, Best Last and Best Median are

the best choice in most of cases.

Garg and Juneja [39] propose a solution in which clients and servers collaborate th-

rough a collection of agents that they call client ants and server ants. Client and server

ants collaborates to decide the best server to serve the clients. The ants maintain histori-

cal information about previous requests and this information is used in future decisions.

The ant behavior is also explored by Nishant et al. [66]. This work proposes the use

of mobile agents (ants) that traverse the network topology to identify overloaded and

underloaded servers and redistribute the load.

In [63] we have proposed an approach for client-based load distribution that adaptively

changes the fraction of load each client submits to each service replica to try to minimize

overall response times.

Liu e Lu [54] present a solution based on a centralized dispatcher that uses the state

of the servers to redirect the client requests through HTTP redirection. Besides, the

dispatcher also performs an admission control that gives priority to more rewardable

requests. A survey of dispatcher-based solutions can be found in [40]. Although theses

solutions are more suitable to load balancing inside the cluster, many techniques can be

applied in the case of geographically distributed web servers.

Wang et al. [93] describe a solution that uses the OpenFlow standard to balance

the load among replicated servers. In this solution, a centralized load balancer installs

wildcards rules in the switches to direct requests for groups of clients to different servers

according to their capacities.

Server-based load balancing for distributed web services, that is the focus of this

paper, has been studied by many researchers. Cardellini and Colajanni [17] compare

the performance of centralized versus distributed control algorithms for the activation

of the load balancing mechanisms, for the localization of the destination servers, and

for the selection of the requests to be redirected. The study concludes that there is a

trade-off between the slightly better performance of centralized algorithms and the lower

complexity of distributed ones.

Chatterjee et al. [20] present a load balancing solution that redirects requests based

on server capacity, server load, and size of the requested documents. The status of all

servers is centralized by a single entity. This global information is used by overloaded

replicas to redirect requests to the lightly loaded one.

The solution proposed by Ranjan and Knightly [74] considers both CPU load and

network latencies to reduce the system response time. If a request arrives at web server k,
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then the objective is to dispatch the request to a web server j satisfying min(2∆kj + Tj),

where ∆kj is the network latency between k and j and Tj is the estimate of service time

in j.

Andreolini et al. [6] compare a number of load balancing solutions that vary according

to their compliance with four properties of autonomic systems: decentralization of control,

information collection and reflection, adaptation to a changing environment, and loosely-

coupled collaboration. Their results show that the integration of these concepts into the

load balancing solution leads to the improvement of the stability and robustness of the

system.

Pathan, Vecchiola, and Buyya [71] propose a solution similar to the one proposed by

Ranjan and Knightly [74]. The main difference is that, in the former, when a request

is redirected, the original client needs to resend the request to the other server replica.

In the latter, the redirecting replica intermediates the communication between the end

client and the other replica by forwarding the request. Therefore, the solution proposed

in [71] needs to estimate the network latency among end clients and server replicas, which

is much more difficult than estimate the network latency among server replicas.

Ardagna et al. [7] combine capacity allocation techniques for geographically distributed

cloud sites with a load redirection mechanism to minimize the costs of allocated virtual

machines, while guaranteeing QoS constraints. The load redirection mechanism is based

on workload prediction and uses optimization techniques to determine the amount of load

that should be served locally and the amount of load that should be redirected to other

sites.

Our solution minimizes the system response times considering the load status of the

web servers and network latencies, as [71] or [74] but, in contrast to related work, the

novelty in our work can be summarized as: (i) the proposition of a remote resource

reservation mechanism that precludes overloaded servers from overloading lightly loaded

ones, and (ii) the use of a heuristic based on this mechanism that allows servers to tolerate

abrupt load peaks.

7.3 Remote Resource Reservation

In this section we introduce our load balancing solution and motivate our design decisions.

Next, we describe the middleware and the heuristics that support the remote resource

reservation.
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7.3.1 Overview

The response time of a request redirected from a server to another is affected by two

factors: the latency between them, and the time the remote server takes to process the

request. Intuitively, the best choice would be to redirect requests to the closest lightly

loaded server (in terms of latency, not physical distance). However, this intuitive policy

may be very inefficient if the redirections end up overloading the remote server. For

example, consider the situation illustrated in Figure 7.1. There are three servers with

the same capacity, let us say, 100 requests per second (r/s). The gray bars represent the

average load incoming over the time to each server. In t1, server A becomes overloaded

and needs to redirect elsewhere 40r/s. Let us consider that B is the closest lightly loaded

server. In time t2, A starts redirecting 40r/s to B that then becomes overloaded. As

a consequence, it multicasts an alarm message to inform its peers that it is overloaded

(t3). Once A receives this alarm, it stops redirecting requests to B and starts redirecting

its excess workload to the next closest lightly loaded server C at t4. Now, C becomes

overloaded.

Figure 7.1: The intuitive policy not always gives the best result.

The situation just described (Figure 7.1) can happen because the servers share only a

binary information “overloaded or not”. This policy can be improved if the servers also

inform the capacity they can offer to the others. In this case, the server A could split its

exceeding load between B and C. However, even this improved policy may be inefficient

in some cases. For example, let us consider the situation in Figure 7.2. In t1, the servers

inform the capacity they can lend. Next, in t2, A becomes overloaded. It knows the

capacity of B and C and appropriately split its exceeding load between them (t3). When

D becomes overloaded (t4), it also knows the capacity of B and C, but it does not know

if another server is already redirecting requests to B neither how much redirected load B

might be already receiving. Thus, since D’s exceeding load fits to the last B’s capacity
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information, D starts redirecting to B (t5), which then becomes overloaded.

Figure 7.2: Improved intuitive policy.

Our load balancing policy tries to minimize the service response times by conditio-

ning overloaded servers to redirect their excess load to the closest lightly loaded servers

available without overloading them. The heuristic underpinning our solution is based on

a reservation policy that allows overloaded servers to reserve capacity of remote servers

before redirecting requests to them. The amount of capacity reserved for a server cannot

be shared with any other set of servers. The implementation of this policy in our mid-

dleware, the Resource Broker (RB), allows servers to share their spare capacity among

the set of servers that execute the application while avoiding the situation exemplified in

Figure 7.2.

Figure 7.3 shows an example of the execution of our load balancing policy. Again, let

us consider that A and D are overloaded servers and B is the closest lightly loaded server.

Suppose that A becomes overloaded first, in t1, and then starts to negotiating resources

with B (t2). Since B is not able to serve its extra load, A also negotiates resources with C.

In t3, A starts to redirect 30r/s to B and 10r/s to C. Next, in t4, D becomes overloaded

and starts negotiating resources with B (t5). Since B is not able to serve its extra load,

D negotiates resources with C. Finally, in t6, D starts redirecting 20r/s to C.



7.3. Remote Resource Reservation 93

Figure 7.3: Remote Resource Reservation.

Our load balancing policy has been implemented as a heuristic (Section 7.3.3) that is

performed by a resource broker middleware to manage the aggregate resource capacity

available for the geographically distributed servers (Section 7.3.2).

7.3.2 The Resource Broker

The resource broker (RB) is the middleware we have created to manage the trade of

resources among a set of servers. From the perspective of the RB, servers can play

two different roles: providers and consumers (Figure 7.4). Providers are lightly loaded

servers that can offer resources to other servers. Consumers are overloaded servers that

consume resources offered by providers. Any server can act as a provider or as a consumer,

according to its current workload. Hence, it can move from provider to consumer and

vice-versa as many times as dictated by the changes in its workload.
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Figure 7.4: Resource Broker conceptual operation.

The RB makes the exchange of resources transparent to individual servers, that is,

individual servers see the aggregated capacity of the system but do not know which server

is actually a provider. Consumers can allocate resources through the RB to complement

their local capacity and, thus, make them able to serve their workload.

The RB manages the amount of resources provided and consumed by the servers.

The capacity requested to the RB by a consumer is equally divided among the minimum

number of nearest providers available, in order to try to minimize network latencies.

The middleware that implements the RB is composed of two components: the RBMas-

ter and the RBNodes. The RBMaster is the core of the middleware. It is responsible for

allocating resources to the consumers and also for reallocating resources when the status

of providers changes. In order to perform this, it maintains information about: the status

of the servers, the network latencies among the servers, the amount of resources offered

by each provider, the amount of resources allocated to each consumer, and the mapping

between resources and actual resources providers. Since the RBMaster is a single point

of failure, it should be replicated in order to guarantee its availability in the presence of

partial failures.

The allocation of resources is modeled as an optimization problem that is solved by

the RBMaster using linear programming. The linear model can be described as:
Objective function:

Minimize:

p∑
j=1

c∑
i=1

Rij ∗ Lij

Constraints:

Subject to:

p∑
j=1

Rij ≥ Di , 1 ≤ i ≤ c

n∑
i=1

Rij ≤ Oj , 1 ≤ j ≤ p
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where, Rij is the amount of resources, in requests per second, the consumer i should

reserve from provider j; Lij is the mean network latency between the consumer i and the

provider j; p and c are the number of providers and consumers, respectively; Di is the

demand of consumer i (in r/s); and Oj is the amount of resources offered by provider j

(in r/s).

The objective function is to find Rij, with 1 ≤ i ≤ c and 1 ≤ j ≤ p, that minimizes

the mean latency of redirections. The first constraint ensures that the aggregate load

redirected by a consumer i is served. The second constraint ensures that no provider

will receive an aggregate redirected load higher than the capacity it offered. When the

linear program does not converge to a solution, the requests for allocation of resources

are refused and the redistribution of resources is postponed.

The RBNodes are software agents that run on every server. They monitor the server

workload and communicate with the RBMaster to offer local resources or to allocate

aggregated resources. The RBNode also monitors the network latencies between the local

server and all remote servers and reports this information to the RBMaster.

Figure 7.5 shows the interaction between a consumer and the RB middleware. The

consumer server communicates with the local RBNode to allocate resources and to submit

load to them. In order to allocate the resources, the RBNode interacts with the RBMaster

through the messages shown in Table 7.1.

Figure 7.5: Interaction between a consumer and the middleware.

When a load request is submitted to the RBNode, it distributes the requests among

the resource providers following a set of probabilities calculated as follows:

Pi =
Ci

Caggregated

where Pi is the probability of sending a request to the provider i; Ci is the capacity

offered by server i; and Caggregated is the total capacity allocated in the RBMaster for the

server. This probabilistic distribution helps to avoid abrupt accumulation of requests in

the income queues of the providers.
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Table 7.1: Messages for Resource Allocation
ReportLatencyTable Sent by RBNodes to report the estimate of latencies

among the local server and the others.
AcquireResources Sent by RBNodes to request the allocation of an amount

of virtual resources (in requests per second) or to mo-
dify the amount already allocated. If the invoking RB-
Node is a provider, the RBMaster sets it as consumer
and reallocates virtual resources for all consumers that
were consuming resources of this provider. Otherwise, if
the invoking RBNode is a consumer updating its value
amount of virtual resources, the RBMaster reallocates
the virtual resources to it.

ProviderList Sent by RBMaster to inform the list of providers that
will provide virtual resources to the RBNode. This list
also informs the maximum load that each provider is
allowed to serve. The list is chosen regarding the laten-
cies from providers to the consumer and is ordered by
the network latency. In order to minimize response ti-
mes, the RBNode should use all capacity of the closest
provider before submitting load to the next one.

Figure 7.6 shows the interaction between a provider and the Request Broker. The

provider communicates with the local RBNode to announce its spare capacity. The RB-

Node receives requests incoming from consumers and forwards them to the local server.

In order to offer its spare capacity, the RBnode interacts with the RBMaster through the

message described in Table 7.2.

Figure 7.6: Interaction between a provider and the middleware.
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Table 7.2: Message for Resource Sharing
ReportResourceAvailability Sent by RBNodes to announce the amount of re-

sources (in requests per second) they are able to

offer or to update the value amount already offe-

red. If the invoking RBNode is a consumer, the

RBMaster sets it as provider and disposes any vir-

tual resource it has allocated. Otherwise, if the in-

voking RBNode is a provider reducing the amount

of resources it is sharing, the RBMaster realloca-

tes virtual resources for all consumers that share

resources of this provider.

Another function of the RBNode is to perform admission control for the provider. It

guarantees that consumer redirections do not exceed the consumer reserved quota. If a

consumer redirects load larger than its quota, the exceeding requests are enqueued. In

order to avoid underutilization of resources, whenever free execution slots can not be filled

with requests from not entirely consumed quotas, enqueued requests are executed in a

round robin way.

7.3.3 Load Balancing Heuristics

The Resource Broker solves the problem of choosing the remote servers to which to redirect

requests. The selection policy has to be combined with some load conditioning policy

that dictates when to redirect requests. In our solution, the servers apply the following

heuristic. First, the server calculates:

Plocal =
Clocal

Clocal + Creserved

where Plocal is the probability of executing an incoming request locally; Clocal is the

local capacity (in r/s); and Creserved is the capacity reserved with the Resource Broker.

Thus, according to Plocal, the request is served locally or is sent to the Resource Broker.

This probabilistic decision scatters the requests over local and remote resources rather

than exhaust the local resources before redirecting. Such strategy avoids the accumulation

of requests in the local queue.

Another decision problem is related to the amount of remote resources that an over-

loaded server should try to allocate. This decision depends on the workload of the server.

In our solution, we use a sliding average of the request rate to detect significant load chan-

ges. The remote resource allocation is dynamically adjusted on the basis of the average
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request rate.

An important factor that can affect negatively the responsiveness of the servers to

workload surges is the communication delay (latency) imposed by the wide area network

on the message exchanges between the RBNodes and the RBMaster.

In order to deal with this problem, we propose the use of a capacity safety margin.

Each server must have spare resources (CPU, memory, disk, etc) beyond the amount

needed to support its average request rate. The safety margin is amount of capacity, in

terms of requests per second, a server holds beyond its incoming average load to sustain

its performance even in the presence of abrupt workload changes. It helps the server to

tolerate peaks of load until the remote resource allocation can be adjusted. For example,

suppose that a server with capacity Cr/s and capacity safety margin Sr/s is receiving

an average load of Lr/s. If L < (C − S), the server can offer (C − (L + S))r/s. If not,

01 Definitions:

02 C: Server capacity (in Requests per Second - r/s)

03 L: Last significant average load change (in r/s)

04 A: Last average load sample (in r/s)

05 S: Safety margin size (in r/s)

06 ST: Load sample time (in seconds)

07 SAWS: window size for load sliding average

08 (in seconds)

09 th_inf: Threshold for significant load decrease

10 (in r/s)

11 th_sup: Threshold for significant load increase

12 (in r/s)

13

14 On each ST seconds:

15 A = average request rate of SAWS seconds

16 IF (A < (L-th_inf)) or

17 (A >= (L+th_sup)) THEN

18 L = A

19 ENDIF

20 IF L < (C-S), THEN

21 Offer (C-(L+S))

22 ELSE

23 Allocate ((L+S)-C)

24 ENDIF

25 RETURN

Figure 7.7: Remote resource allocation heuristic.
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the server has to allocate ((L + S) − C) from the Resource Broker. The pseudo-code in

Figure 7.7 describes the heuristic used to manage the remote resource allocation.

7.4 Simulation

In order to evaluate our solution, we have implemented a simulator using the CSIM for

Java3, a discrete event simulation framework. We have used the Gnu Linear Programming

Kit (GLPK)4 to implement the linear programming routine used to optimize the allocation

of resources. The following sections detail our simulation setup.

7.4.1 Internet Latencies

We have considered a scenario with six servers distributed over the world (Figure 7.8):

one in South America (S1), one in North America (N1), two in Europe (E1 and E2), and

two in Asia (A1 and A2).

Figure 7.8: Geographical distribution of servers.

We adopted the average of the latencies (half of the round-trip time) t±5%t, measured

on real hosts of PlanetLab5 in Brazil, USA, Belgium, Austria, Japan, and China to

simulate the latencies among the servers (Table 7.3). We also consider that servers of a

given region execute primarily the requests of clients of that region and that the average

latency between a client and its regional server is 10ms.

3http://www.mesquite.com/
4http://www.gnu.org/software/glpk/
5http://www.planet-lab.org
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Table 7.3: Table of latencies among the replicas (ms).

S1 N1 E1 E2 A1

N1 89

E1 138 48

E2 140 58 18

A1 193 109 151 162

A2 272 156 114 122 68

In order to take into account the latency of the TCP protocol, we adopted the analytic

model proposed by Cardwell et al. [18]. This work extended previous models for TCP

steady-state by deriving models for two other aspects that can dominate TCP latency: the

connection establishment three-way handshake and the TCP slow start [77]. Therefore,

the model proposed by Cardwell et al. can predict the performance of both short and

long TCP flows under varying rates of packet loss.

In practice, the TCP model estimates the time needed to transfer data from one

endpoint to another in terms of: (i) the size of the data to be transferred; (ii) the network

latency between the two endpoints; and (iii) the packet loss probability.

7.4.2 Load Generation and Web Servers

We have used the PackMime Internet traffic model [1, 15] to generate HTTP traffic in

our simulations. The PackMime has been designed from a large-scale empirical study of

real web traffic and has been implemented in the ns-2 6, a well known network simulator.

In order to use the model in our simulations, we have implemented it in Java.

PackMime allows the generation of both HTTP/1.0 and HTTP/1.1 traffic. The in-

tensity of the traffic is controlled by the rate parameter, which is the average number of

new connections started per second. The implementation provides a set of random vari-

able generators that drive the traffic generator. Each random variable follows a specific

distribution. The Java implementation of PackMime uses the same distribution families

and the same parameters described in [15]; the random variables implemented are: (i)

inter-arrival time between consecutive connections, (ii) number of pages requested in the

same connection (if using HTTP/ 1.1), (iii) number of objects embedded in a page, (iv)

sizes of files (pages and objects), (v) time gap between page requests, and (vi) the time

gap between object requests. The random variable used to generate the transmission

delays (RTT) was substituted by the model proposed by Cardwell et al [18]. The ran-

dom variable used to model the execution time was substituted by a queueing computing

6http://www.isi.edu/nsnam/ns/
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element of CSIM.

We defined five different workload profiles, shown in Table 7.4, with different rates of

number of client sessions started per second. These profiles, or variations of them, were

used in our experiment to assess the behavior of the different load balancing policies at

different levels of system load.

Table 7.4: Workload profiles for testing different levels of system utilization.

Profile Sessions/Second Capacity Utilization

A 1400 ≈ 70%

B 1500 ≈ 75%

C 1600 ≈ 80%

D 1700 ≈ 85%

E 1800 ≈ 90%

In order to divide the load generation between different domains, we adopted a solution

similar to the one proposed by Colajanni and Yu [24]. In the paper, the authors propose

to divide clients into domains according to the Zipf’s distribution, where the probability of

a client to belong to the ith domain is proportional to 1/ix. This solution was motivated

by previous work that demonstrate that if one ranks the popularity of client domains by

the frequency of their accesses to a server, the size of each domain is a function with a big

head and a very long tail. So, in our simulations, if we adopt the profile A, for example,

1400 (the total amount of sessions per second) is divided into fractions whose sizes follow

a Zipf distribution, and then, these fractions are randomly assigned to one of the domains.

The aggregated amount of sessions per second assigned to a domain defines the workload

that is generated in that domain.

We have modeled each computing element used to assemble servers as a queueing

system with a fixed service time of 10ms and a capacity of 100r/s. The maximum queue

size is 500 requests. While the queue is full, the computing element drops the requests

it receives from clients. The request inter-arrival time distribution is defined by the

PackMime model. In our simulations, we have considered a scenario with six servers, each

one comprised of a cluster of 4 computing elements that provide an aggregate capacity of

400r/s.

7.4.3 Measurements

A main effect of a poor load balancing is the accumulation of requests in the queues of the

overloaded servers. As a consequence, there is an increase in the response times perceived

by clients, and, in the worst case, the queues become full and servers start dropping
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requests. Considering this, we decided to evaluate the load balancing solutions in terms

of the average of response times and the number of dropped requests.

In our experiments, each simulation was executed during 1 hour of simulation time

and we started gathering statistics after the first 5 minutes (warm up) of simulation and

stopped 5 minutes prior to the end of the simulation, obtaining simulations whose steady

state lasted 50 simulation minutes. We have saved the average of the response times for

the requests and the number of dropped requests for each steady period of simulation.

Besides, we have also collected measurements of the utilization of the servers and the

number of request redirections.

The number of simulations, 35 for each experimental setup, and their duration, 50

minutes of steady state, were designed to guarantee a 95% confidence level with different

levels of accuracy for each experiment [48]. The specific accuracy and confidence level are

indicated along with each experiment; they always guarantee that the conclusions drawn

from the experiments are based upon statistically significant evidence. Each simulation

used a different seed for the random number generators. The results are summarized as the

average of the 35 averages of response times, with a 95% confidence interval. Similarly, we

have also calculated the average of the number of dropped requests for the 35 simulations,

with a 95% confidence interval. In the remaining of the text, unless explicitly mentioned,

when we refer to the average of response times and to the average of dropped requests,

we will be referring to the average of the 35 values gathered from the 35 independent

simulations.

We have used one-way ANOVA [31, 82], with a 95% confidence level, to verify whether

the differences among the average response times for distinct load balancing setups were

significant; the results with a p-value < 0.001 are taken into consideration in the analysis

of the results. Additionally, significance of the difference between two average response

times where calculated using bootstrapping (10,000 resamplings) with a 95% confidence

level [82].

7.5 Evaluation

In order to evaluate the effectiveness of the load balancing implemented by the RB,

we have designed four sets of experiments. In the first set, we have investigated the

effectiveness of the solution proposed using different safety margins. In the second set,

we have compared our solution to other four well-known load balancing solutions. The

third set of experiments has been designed to assess how our solution deals with sudden

workload changes. The last set of experiments assessed the scalability of the RB.
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7.5.1 Sensibility to Safety Margins

As explained before, the selection of a safety margin is an important parameter of our load

balancing policy. So, to assess the sensibility of our solution to different safety margins,

we run simulations with four different safety margins: 10% (RB-SM10), 15% (RB-SM15),

20% (RB-SM20), and 25% (RB-SM25) of the workload. These safety margin setups were

simulated for each of the five workload profiles listed in Table 7.4.

Figure 7.9 shows the average response times for each combination of safety margin

and workload. The one-way ANOVA and bootstrapping show that, for workload A, all

safety margins did not present significant differences in the average response times; for

the details see Annex A, Tables 7.7 and 7.8. This result is explained by the fact that all

servers have enough processing capacity to deal with workload A regardless of the safety

margin setup.

Figure 7.9: Average of response times for different safety margins.

For workloads B, C, and D (Figure 7.9), we can identify significant differences in the

average response times as a function of the safety margins (Tables 7.7 and 7.8). As we

can see, there is an inverse correlation between safety margin and the average response

times; the larger the safety margins the smaller the average response times. The main

reason for this result is related to the number of requests present in the local queue of
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the lightly loaded servers. Although the lower safety margin (RB-SM10) was enough to

allow them to serve their average workload, they were not enough to reduce the effect

of load peaks as they caused an increase in the number of requests waiting at the local

queues of the servers, thus increasing their individual response times and with a negative

effect upon the overall efficiency of the system. The larger safety margin prevents the

increase of the local queues, thus allowing better response times. In the cases where the

system has enough resources to provide to other servers, despite the maintenance of a

higher safety margin, the overloaded servers are not substantially affected.

When the system is subject to a heavier load (Figure 7.9, Workload E), the tendency

observed for lighter workloads is not observed. The largest safety margin (RB-SM25) gives

the worst response times. The reason for this result is that when the exceeding aggregate

capacity of the system is not enough to support the aggregate safety margin, the providers

tend not to offer resources to consumers and there is a lack of resources to serve their

exceeding load. As a result, there is an increase in the size of server queues, an increase

in the response times, and also an increase in the number of dropped requests (Figure

7.10). The figure shows that with a safety margin of 25% of the workload (RB-SM25) the

number of dropped requests is much higher than the number of dropped requests for the

others. The number of dropped requests for the workloads A, B, C, and D (Table 7.4) is

negligible, so the values have been omitted.

Figure 7.10: Number of requests dropped for different safety margins (Workload Profile

E).
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The results presented in Figure 7.9 indicate that the choice of the best safety margin

becomes critical as the workload increases. Overall, it is possible to see that the value

of the best safety margin varies according with the workload, as expected. The results

for Workload E hint that there is an optimum value for the safety margin. For a given

system setup, taking into account periodical or seasonal workload patterns, it is probably

possible to devise an algorithm that uses the history of safety margins and response times

for two purposes: (i) dynamically adjust the number of active servers as the workload

varies, and (ii) offer a recommendation on when extra servers have to be added to data

centers to meet demand without sacrificing the quality of the service (response times).

Since the 15% safety margin (SM15) has resulted in very similar response times for

workloads A, B, C, and D, and has given the best result on workload E, we have adopted

SM15 as the safety margin used in the setup of the experiments discussed in the next

sections.

7.5.2 Comparative Study

We have compared our solution with four other load balancing solutions:

• Round Robin (RR): Overloaded servers redirect exceeding requests to one of the

other servers, in a rotative way;

• Round Robin with Asynchronous Alarm (RR-AA): Improves the simple round robin

policy by considering the load status of remote servers. Overloaded servers broadcast

an alarm informing their status. This way, all overloaded servers can remove each

other from their round-robin list;

• Smallest Latency (SL-AA): Overloaded servers redirect exceeding requests to the

closest lightly loaded remote server. Overloaded servers use asynchronous alarm to

inform their status;

• Least Used (LU): Every server periodically broadcasts a control message reporting

its load. Overloaded servers redirect exceeding requests to the least used one.

The use of asynchronous alarms in RR-AA and SL-AA was motivated by [25] that has

reported good performances of similar solutions. RR-AA and SL-AA were configured to

accept redirected requests if their average load is smaller than 85% of the server capacity.

The average load used in the decisions of RB, RR-AA, and SL-AA where calculated in

a window of 30s. In LU, the servers were configured to report their current load every

second.

Figure 7.11 presents the average of response times for each solution and workload; the

details can be seen in the Annex, Tables 7.9 and 7.10. As the results show, LU presented
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the worst response times for all workloads. This happened because the periodicity of

the load report does not provide information on the status of the servers fast enough to

avoid the overloading of the selected server (the least used one). When overloaded servers

perceive that the current least used server is another server, the previous one has already

become overloaded, and then, despite the frequent communication of load reports, average

response times increase.

Figure 7.11: Average response time for different load balancing solutions.

For workload A, the use of policies RB, RR, RR − AA, and SL − AA have given

statistically identical average response times. This result indicates that for a given system

setup if the workload is light enough, all four solutions present similar performances.

However, as the load increases (workloads B to E), we can notice that RB, our solution,

presents response times significantly lower than the others and that the difference between

the response times returned by RB and those of the other solutions increases as the

workload is increased.

In scenario E, where the capacity of the system is almost saturated, RR presented ave-

rage response time between 0.163s and 0.286s higher than RB. SL-AA presented average

response time between 0.132s and 0.179s higher than RB, and RR-AA presented average

response time between 0.095s and 0.134s higher than RB. Considering that, in this sce-

nario, the average response time of RB was 0.107s, the second best solution (RR-AA)

presented a response time, at least, 88% higher.
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The poor performance of RR was expected, since it ignores the state of remote servers

when selecting a server to which to redirect its exceeding load. So, overloaded servers

receive as much redirection as lightly loaded servers. Both RR-AA and SL-AA rely on a

reactive strategy that raises an alarm when a server perceives a state change. Due to the

internet latencies, the alarm does not provide a reaction in time to avoid the overloading

of the servers. We can notice, however, that RR-AA presented a performance slightly

better than SL-AA. The reason is that RR-AA tends to distribute the exceeding load

more evenly than SL-AA. Different from the others, RB adopts a preventive strategy

that distributes the exceeding load among the remote servers through a previous resource

reservation.

Table 7.5 shows the utilization of each server for one simulation using workload profile

E. As the coefficients of variation (COVs) indicate, the variance of server utilization

for RB is lower than the variance for the others. This shows that RB has distributed

the workload more efficiently among the different servers. A server utilization near the

maximum suggests that the server had its queue occupation close to its limit during

most of the experiment. This explains the increase in the response times and in the

probability of dropping requests due to the occurrence of full queues. For the same

workload profile, Figure 7.12 shows the average number of requests that were dropped by

each load balancing solution. It is possible to see that the number of requests dropped by

RB is negligible when compared to the number of requests dropped by the other solutions.

Table 7.5: Server utilization, Workload Profile E. 0, 0 ≤ utilization ≤ 1, 0.

S1 N1 E1 E2 A1 A2 COV∗

RB 0,91175 0,90625 0,87875 0,90675 0,8875 0,88375 0,016

RRAA 0,785 0,83275 0,96575 0,9905 0,8435 0,9565 0,095

SL 0,788 0,83175 0,9655 0,9895 0,8375 0,957 0,095

LU 0,99925 0,5555 0,9665 0,99075 0,7765 0,95675 0,202

RR 0,6245 0,7195 1,0 1,0 0,9355 1,0 0,188
∗COV: Coefficient of Variation
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Figure 7.12: Number of requests dropped versus load balancing solutions (Workload Pro-

file E).

7.5.3 Sensibility to Abrupt Load Changes

In order to assess our load balancing solution under abrupt workload changes we have

adapted the workload profile E as explained next.

1. We have generated a regular workload of profile E, as described in Section 7.4.2;

2. We have selected the server with the highest local load, let us say Hr/s, and preset

it to start the simulation with a load equal to the load of the server with lowest

load, let us say Lr/s;

3. During the simulation, we increased the load of the preset server from Lr/s to Hr/s,

in fixed steps, and at regular time intervals.

Two workload increment steps, 10% and 20%, were used in the experiments.

In the experiments carried out so far (Section 7.5.2), RR-AA has presented the second

best average response times, so it has been selected as the benchmark for the experiments

of this section. Figure 7.13 shows the average response times for each combination of load

balancing solution and load increment step. In the figure, we can notice that a larger

workload increment (peak) causes an increase in the average response times of both RB
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and RR-AA, nevertheless, RB has performed better in both the 10% and 20% abrupt

increases.

Figure 7.13: Average response time for different load increment steps.

The reason RB performs better (Figure 7.13) can be attributed to the fact that RB

distributes the load more evenly among the servers than RR-AA, even when a server is

subject to abrupt load increases. This fact is further evidenced by the utilization of the

servers, shown in Table 7.6, for one simulation. For all servers, irrespective of increment

value, the utilizations achieved in each server using RB are very similar, this is not true

for RR-AA. The coefficients of variation summarize this fact very well. For example,

the COV for INC-10% RB is less than half the COV for INC-20% RR-AA. As mentioned

before, a server utilization near the maximum (1,0) indicates that a server had its incoming

queue operating very close to its capacity during the simulation, that increases response

times and the probability of requests being dropped due to the occurrence of full queues.

Figure 7.14 shows the average number of dropped requests, it is possible to notice that

RB dropped much less requests than RR-AA for both 10% and 20% workload increment

steps.
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Table 7.6: Server utilization for a simulation using different workload increment steps.

S1 N1 E1 E2 A1 A2 COV∗

INC-10% RB 0,81575 0,8195 0,70975 0,8705 0,864 0,7685 0,075

INC-10% RR-AA 0,59125 0,675 0,9665 0,82575 0,83225 0,95675 0,186

INC-20% RB 0,824 0,82875 0,72725 0,86825 0,867 0,77975 0,067

INC-20% RR-AA 0,60825 0,687 0,9665 0,84275 0,833 0,95675 0,176
∗COV: Coefficient of Variation

Figure 7.14: Number of requests dropped for different load increment steps.

7.5.4 Scalability

In order to assess the scalability of our solution, we compared RB to RR-AA at four

different scales, besides the original 6 servers configuration, we have simulated system

setups with 12, 18, and 24 servers. In the simulations, the latencies between each pair of

servers were randomly selected from the set of latencies used for the six server scenario

(Table 7.3).

The workload of the new scenarios was increased proportionally to the increase in

the number of servers, using workload profile E, the heaviest one, as the basis. So,

for example, the setup with 12 servers was simulated with a workload corresponding to

3600 (2 x 1800) sessions/second. Accordingly, the scenarios with 18 and 24 servers were

simulated with workload profiles set to 5400 and 7200 sessions/second, respectively.
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We have designed two variations of the workload profile E, according to the way

sessions of the workload were assigned to the servers of the geographical regions. The

rationale behind the creation of the variations is that one of them, the Scale-1 variation,

should allow us to assess the effect of scale when, despite having overloaded servers,

the workload distribution is flatter. The other, the Scale-2 variation, has been designed

to concentrate load on a much smaller number of servers, making them very unequally

loaded in relation to the other servers of the system. So, although the two workload

variations generate the same overall workload, that is, the same number of sessions per

second, the Scale-2 workload variation tends to generate scenarios with a smaller number

of overloaded servers than the Scale-1 workload variation. However, the variance between

the loads placed on servers of the Scale-2 variation is higher than the variance experienced

by the servers of the Scale-1 workload variation.

To create the Scale-1 workload variation we have divided the sessions of the original

workload E using the Zipf distribution, as described in Section 7.4.2. Each fraction of

workload sessions produced by this distribution was replicated k times, where k is the

scale factor, 2, 3, and 4, in relation to the original six server setup. Then, the replicated

fractions of workload sessions were randomly assigned to the server regions. Differently,

to generate the Scale-2 workload variation, the number of workload sessions of the original

six server workload was first scaled up to match the scale of the servers (e.g., 3600 for

the 12 servers setup). Then, the scaled up workload was partitioned according with the

Zipf distribution and the workload partitions were then randomly assigned to the servers

of each region.

Figure 7.15 presents the average response times for RB and RR-AA in simulations with

the Scale-1 workload variation. This chart shows that RR-AA presented average response

times significantly higher than RB in all scenarios. Besides, while RB presented similar

average response times regardless of the number of servers, RR-AA presented an increase

of response times as the number of servers increases (from 6 to 18 servers). Another

evidence that RB performed better than RR-AA is the number of requests dropped due

to full queues. As shown in Figure 7.16, RR-AA dropped a much higher number of requests

than RB. When the Scale-2 workload variation is used in the simulations the results are

similar, that is, RB presents better average response times than RR-AA (Figure 7.17)

and also drops fewer requests than RR-AA (Figure 7.18).

An interesting result can be verified when comparisons are made between the results

obtained with the Scale-1 and Scale-2 workload variations. In terms of the average res-

ponse times (Figures 7.15 and 7.17), it is possible to see both RB and RR-AA had similar

behavior. The average number of requests dropped tells that RR-AA drops much more

requests when subject to the Scale-2 workload variation, so it deals poorly with more

variable workloads. In contrast, RB exhibits the same behavior for both the Scale-1 and
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Scale-2 workloads; this is further evidence RB’s capacity to distribute more evenly the

load among the servers due to its use of safety margins.

Figure 7.15: Average response time for different number of servers (workload: Scale-1).

Figure 7.16: Number of dropped requests for different number of servers (workload: Scale-

1).
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Figure 7.17: Average response time for different number of servers (workload: Scale-2).

Figure 7.18: Number of different requests for different number of servers (workload: Scale-

2).
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7.5.5 Summary

Our first set of experiments (Section 7.5.1) has assessed the sensibility of our solution

to four different safety margins. The results indicate that there is not a better choice

for all situations and suggests that the use of a dynamic safety margin size would be

an interesting improvement for RB. The second set of simulations (Section 7.5.2) has

compared our approach to four well known solutions under different workloads. The

results show that, in all scenarios, our solution presents similar or better performance than

the others in terms of response times and number of dropped requests. The best of these

four solutions (RR-AA) was selected as the benchmark for the remaining experiments.

The third set of experiments (Section 7.5.3) has assessed RB and RR-AA under abrupt

load changes. For these experiments, we defined two scenarios with different load incre-

ment steps (10% and 20% of the current load). The results show that our solution

performed significantly better than RR-AA in both scenarios. Finally, in the last set

of experiments (Section 7.5.4), we have shown that our solution scales up better than

RR-AA and that it is less sensitive to the variance of workload among the servers.

7.6 Conclusion

In this paper, we have introduced a new server-based load balancing policy for worldwide

distributed web servers that was designed on the basis of a protocol for reservation of

remote resources. This protocol and its implementation prevent the overload of remote

servers by limiting the amount of load each server can redirect to the others. This strategy

presented better results than strategies that react to the overloading of remote servers

with simpler remedial actions.

In order to evaluate our solution, we have implemented a simulator based on realistic

internet models and real internet latencies. The results obtained through simulation show

that our solution is sensitive to the safety margin used to alleviate the effects of abrupt

load changes. This suggests that a strategy based on dynamically adapting the safety

margins would be an interesting improvement to our load balancing solution.

The simulations demonstrated that our solution presented better performance, both

in terms of mean response times and the number of discarded requests, when compared

to other well-known solutions, using different workload profiles. Additional experiments

allowed us to conclude that our solution has better resilience to abrupt load changes

and scales better than the best of the well-known solutions used in the experiments: a

round-robin load balancer improved with asynchronous overload alarms (RR-AA).

Future work includes: (i) the implementation and evaluation of a dynamically adap-

table, autonomous, safety margin mechanism; (ii) the evaluation of the sensitivity of our
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solution through an even more comprehensive set of simulations; (iii) the deployment and

evaluation of our solution in a real testbed [65].

7.7 Annex A: One-way ANOVA and Bootstrapping

Table 7.7: One-way ANOVA: workload˜safety margins.

Workload F Value Pr(> F )
A 4.687 0.00379
B 12.203 4.034e-07
C 27.903 3.995e-14
D 39.919 <2.2e-16
E 24.988 6.114e-13
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Table 7.8: Bootstrapping (95% confidence intervals for average response times): worklo-
ad˜safety margins.

Workload Groups Inf. Lim. Up. Lim

A

RB10-RB15 -0.0008 0.0062
RB10-RB20 0.0009 0.0079
RB10-RB25 0.0028 0.0100
RB15-RB20 -0.0015 0.0051
RB15-RB25 0.0003 0.0070
RB20-RB25 -0.0014 0.0053

B

RB10-RB15 0.0016 0.0095
RB10-RB20 0.0049 0.0124
RB10-RB25 0.0067 0.0145
RB15-RB20 -0.0001 0.0065
RB15-RB25 0.0016 0.0084
RB20-RB25 -0.0014 0.0051

C

RB10-RB15 0.0039 0.0109
RB10-RB20 0.0083 0.0149
RB10-RB25 0.0107 0.0175
RB15-RB20 0.0013 0.0072
RB15-RB25 0.0037 0.0099
RB20-RB25 -0.0004 0.0054

D

RB10-RB15 0.0071 0.0132
RB10-RB20 0.0112 0.0173
RB10-RB25 0.0113 0.0174
RB15-RB20 0.0013 0.0068
RB15-RB25 0.0014 0.0070
RB20-RB25 -0.0026 0.0030

E

RB10-RB15 0.0027 0.0128
RB10-RB20 -0.0014 0.0121
RB10-RB25 0.0243 0.0529
RB15-RB20 0.0063 0.0199
RB15-RB25 0.0324 0.0600
RB20-RB25 0.0185 0.0483

Table 7.9: One-way ANOVA: workload˜load balancing solutions.

Workload F Value Pr(> F )
A 4.8055 0.00107
B 14.203 5.065e-10
C 35.698 <2.2e-16
D 57.95 <2.2e-16
E 37.402 <2.2e-16
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Table 7.10: Bootstrapping (95% confidence intervals for average response times): worklo-
ad˜load balancing solutions.

Workload Groups Inf. Lim. Up. Lim

A

RRAA-RB -0.0047 0.0061
RR-RB -0.0042 0.0067
SL-RB -0.0021 0.0128
LU-RB 0.0100 0.0589

B

RRAA-RB 0.0040 0.0152
RR-RB 0.0056 0.0175
SL-RB 0.0106 0.0290
LU-RB 0.0545 0.1366

C

RRAA-RB 0.0131 0.0243
RR-RB 0.0186 0.0421
SL-RB 0.0276 0.0488
LU-RB 0.1294 0.2262

D

RRAA-RB 0.0220 0.0338
RR-RB 0.0514 0.1287
SL-RB 0.0492 0.0764
LU-RB 0.2182 0.2964

E

RRAA-RB 0.0954 0.1336
RR-RB 0.1639 0.2862
SL-RB 0.1325 0.1789
LU-RB 0.2460 0.3086





Caṕıtulo 8

Conclusão

O tema desta tese é a distribuição de carga entre diversos processadores, um problema

fundamental da área de sistemas distribúıdos. A tese foca este problema no contexto

de servidores web geograficamente distribúıdos. Neste contexto, as aplicações clientes

devem ser dinamicamente atribúıdas a réplicas do servidor web que estão espalhadas

pela internet. Durante a pesquisa, foram estudadas soluções de três tipos: soluções de

distribuição de carga via DNS, via servidores e via clientes. Este estudo envolveu a

implementação de uma plataforma de testes baseada em um serviço web real e de um

software de simulação. Como resultado da pesquisa, foram propostas novas soluções

dos três tipos. Demonstrou-se, por meio de experimentos e simulações, que as soluções

propostas apresentam desempenho superior a soluções representativas de suas respectivas

categorias.

A comparação entre as soluções propostas será alvo de investigações futuras. Entre-

tanto, as caracteŕısticas intŕınsecas destas soluções permitem especular sobre suas aplica-

bilidades em diferentes cenários. As soluções de distribuição de carga via DNS, como a

CRML (Caṕıtulo 4), apresentam a vantagem de utilizar o sistema de resolução de nomes,

uma estrutura já consolidada e amplamente utilizada. Talvez por esta razão, este tipo de

abordagem seja utilizada como primeiro ńıvel de distribuição de carga por grandes cor-

porações, como Google e Akamai. No caso espećıfico de soluções baseadas em DNS que

utilizam informações dos clientes, como a CRML, a grande dificuldade é estimar a carga

gerada pelos domı́nios clientes. Existem propostas para a solução deste problema, que

não faz parte do escopo da tese, mas não são triviais. Apesar disto, pode-se vislumbrar

cenários mais espećıficos onde a CRML poderia ser usada com sucesso. Por exemplo,

um cenário onde um provedor fornecesse serviços para um grupo conhecido de grandes

corporações clientes.

A seleção adaptativa de servidores via clientes (Caṕıtulo 5), como outras soluções

desta categoria, permite utilizar a informação de latência fim a fim. Esta informação é

119
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particularmente útil em soluções de distribuição de carga, já que reflete não só o estado

dos servidores, como também da rede. Outra vantagem é que, em alguns casos, esta pode

ser a única opção de distribuição de carga viável, como por exemplo, em cenários onde

os provedores do serviço web não pertencem a mesma corporação, o que impede uma

solução baseada em servidores. Apesar destes pontos positivos, o fato destas abordagens

não serem transparentes para os clientes limita sua aplicabilidade.

Dentre as soluções propostas nesta tese, aquelas que realizam a distribuição de carga

via servidor (Caṕıtulos 6 e 7) são as que apresentam aplicabilidade mais abrangente. A

grande vantagem deste tipo de solução é que elas permitem distribuição de carga com alta

granularidade, afinal, todas as requisições chegam a algum dos servidores. Além disso, o

provedor do serviço normalmente tem controle total sobre os servidores web, o que não

acontece com servidores de nomes e clientes. Portanto, a troca de informações entre os

servidores web é mais facilmente implementada do que entre servidores e outros dispositi-

vos (DNS e clientes). Além disso, soluções baseadas em servidores são transparentes para

os clientes e podem ser implementadas como um segundo ńıvel de distribuição de carga,

em combinação com soluções baseadas em DNS.

A Figura 8.1 sumariza as vantagens e as desvantagens das soluções propostas.

Figura 8.1: Vantagens e desvantagens das soluções propostas.

8.1 Contribuições

As principais contribuições desta tese são:

1. A especificação e o desenvolvimento do Lab4WS, uma plataforma que provê um

ambiente de testes para soluções de distribuição de carga, preservando proprieda-

des do ambiente real que são importantes para tais mecanismos. O Lab4WS foi

constrúıdo com base em uma implementação real de um serviço web que segue a
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especificação do TPC-W, um benchmark para comércio eletrônico bastante conhe-

cido. A plataforma foi validada com implementações de soluções de distribuição de

carga de quatro tipos e apoiou o desenvolvimento de uma nova solução baseada em

DNS.

2. Um simulador Java para apoiar o desenvolvimento e a avaliação de soluções de

distribuição de carga. Este simulador foi constrúıdo com base no modelo Packmime

de geração de carga, que é utilizado no simulador ns-2, e em dados de latência de

rede reais, coletados por meio da plataforma PlanetLab. Além disso, o simulador

utiliza um modelo anaĺıtico, encontrado na literatura, que estima as latências do

protocolo TCP. O simulador apoiou o desenvolvimento de 3 novas soluções para

distribuição de carga.

3. Uma nova solução para distribuição de carga via DNS, a CRML, que utiliza in-

formações de carga dos clientes para melhorar a distribuição entre os servidores.

Esta solução reduz os efeitos negativos do mecanismo de caching do DNS sobre a

distribuição de carga por meio da cooperação entre o DNS autoridade (ADNS) e os

servidores. A CRML foi comparada a 4 outras soluções de distribuição via DNS e

apresentou desempenhos semelhantes ou superiores em todos os experimentos, mos-

trando ganhos mais significativos em cenários onde a ação negativa do caching é

maior.

4. Uma nova solução para distribuição de carga via clientes que atribui diferentes

probabilidades de seleção para os servidores, de forma adaptativa, levando em con-

sideração os tempos de resposta percebidos pelo cliente. A solução proposta foi

comparada a duas outras que representam dois tipos: soluções que distribuem a

carga igualmente entre todos os servidores e soluções que selecionam um único ser-

vidor de forma gulosa. As simulações mostram que a solução adaptativa apresenta

melhores desempenhos tanto em cenários favoráveis ao primeiro tipo, quanto em

cenários favoráveis ao segundo.

5. Uma nova solução para distribuição de carga via servidores baseada em limites

de redirecionamento de carga – a LRR. Os limites são calculados dinamicamente

de acordo com a demanda e a oferta global de recursos. Esta estratégia ajuda

a prevenir a sobrecarga dos servidores remotos, refletindo nos tempos de resposta

percebidos pelos clientes. A LRR foi avaliada em comparação a duas outras soluções

e apresentou melhor desempenho em todos os cenários considerados.

6. Uma extensão da LRR que trata a divisão de recursos entre os servidores sobrecar-

regados como um problema de otimização e utiliza programação linear para resolvê-

lo. Outro aperfeiçoamento foi a inclusão da reserva de recursos, que garante que a
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demanda dos servidores sobrecarregados será atendida nos servidores remotos. A

nova solução apresentou melhor desempenho quando comparada a 4 outras soluções.

Além disso, mostrou melhor escalabilidade e melhor adaptação a mudanças bruscas

de carga que a melhor das outras 4 soluções.

7. A especificação de um middleware para compartilhamento de recursos entre as

réplicas dos servidores web. Este middleware foi inicialmente proposto como parte

da LRR e depois foi estendido para a solução que utiliza reserva de recursos.

8.2 Trabalhos Futuros

Algumas posśıveis extensões desta tese são:

1. Implantação da plataforma Lab4WS em datacenters geograficamente dis-

tribúıdos e em hosts do PlanetLab. O Lab4WS foi validado e utilizado em

aglomerados com enlaces que emulam as latências da internet. Entretanto, os com-

ponentes da plataforma poderiam ser implantados em datacenters distribúıdos pela

internet, utilizando serviços de nuvem, por exemplo, e em hosts do PlanetLab. Isto

permitiria a avaliação de soluções de distribuição de carga em um ambiente de in-

ternet real. Além disso, abriria possibilidades para pesquisas em áreas correlatas,

como replicação de servidores e soluções de caching.

2. Implementação de uma versão distribúıda do software de simulação. A

implementação do software de simulação limita a escala dos experimentos pela quan-

tidade de memória f́ısica do computador que executa a simulação. Uma versão dis-

tribúıda permitiria executar as simulações em clusters, possibilitando uma escala

muito maior.

3. Avaliação das soluções simuladas na plataforma de testes. As soluções

baseadas em clientes e em servidores propostas nesta tese foram avaliadas por meio

de simulações. Um trabalho futuro é implementar estas soluções como módulos da

plataforma Lab4WS e avaliá-las em um ambiente real.

4. Comparação entre as soluções propostas. As soluções propostas na tese fo-

ram avaliadas individualmente por meio de experimentos comparativos com outras

soluções do mesmo tipo. Uma extensão da pesquisa seria comparar as soluções de

diferentes tipos a fim de identificar os cenários em que cada uma é mais apropriada.

5. Adaptação da seleção adaptativa de servidores via clientes para solução

baseada em servidores. Nas soluções de distribuição via servidores, os servidores
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sobrecarregados podem ser vistos como clientes dos servidores para os quais redi-

recionam sua carga. Considerando que a seleção adaptativa via clientes, proposta

nesta tese, apresentou bons resultados, a adaptação desta solução para servidores

parece promissora.

6. Extensões para soluções baseadas em servidores. As soluções baseadas em

servidores propostas nesta tese podem ser estendidas em diversos aspectos. Um des-

tes aspectos é a diferenciação de requisições por conteúdo. Neste caso, os servidores

sobrecarregados poderiam selecionar as requisições a redirecionar de acordo com o

conteúdo esperado como resposta e priorizar determinadas classes de requisições.

Outro aspecto que pode ser explorado é a granularidade dos redirecionamentos.

Nas soluções propostas, considerou-se o redirecionamento no ńıvel de requisição.

Outra possibilidade seria o redirecionamento no ńıvel de clientes. Neste caso, to-

das as requisições de um mesmo cliente são obrigatoriamente atendidas por um

mesmo servidor. Isto seria particularmente importante em aplicações que utilizam

sessões de clientes, porém, introduzirá outros problemas, como a necessidade de

estimar a carga gerada pelos clientes. Um terceiro aspecto a ser estudado é o tipo

de informação utilizada pelas poĺıticas de distribuição de carga. Informações mais

complexas podem melhorar o desempenho da distribuição de carga, porém, geram

sobrecarga para coleta e disseminação dos dados.

7. Soluções para aglomerados. Uma continuação natural da pesquisa seria focar

as soluções para distribuição de carga voltadas para aglomerados de servidores. Um

estudo poderia analisar a viabilidade de utilizar as ideias propostas na tese com

foco voltado para este outro contexto. Além disso, este tópico possui importan-

tes aspectos de pesquisa a serem explorados, como por exemplo, a combinação da

solução para distribuição de carga com estratégias para elasticidade horizontal do

aglomerado e economia de energia.





Apêndice A

Análises Estat́ısticas

Complementares

Este apêndice contém análises estat́ısticas que complementam os resultados apresentados

nas seções 4, 5 e 6. As médias dos tempos de resposta apresentadas neste apêndice

correspondem às médias das médias dos tempos de resposta de n experimentos, onde n

varia de um caso para outro. Utilizou-se análise de variância (ANOVA) para determinar

se a diferença entre as médias dos tempos de resposta é significativa. Apenas diferenças

com ńıvel de confiança menor que 0,001 foram consideradas significativas. Além disso,

utilizou-se bootstrapping com 10.000 re-amostragens para estimar a diferença entre as

médias dos tempos de resposta com confiança de 95%.

A.1 Tempo de Resposta para CRML

A Figura A.1 apresenta a média dos tempos de resposta de 8 experimentos para a operação

SubjectSearch, no cenário com 30% de controle do ADNS, usando 3 soluções diferentes

(CRML1, MRL2 e RR23). Este cenário é descrito na Seção 4.6.2.

1Current Relative Minimum Load
2Minimum Residual Load
3Two Tier Round Robin
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126 Apêndice A. Análises Estat́ısticas Complementares

Figura A.1: Tempos de resposta médios para a operação SubjectSearch.

A Tabela A.1 apresenta o resultado da ANOVA e seu grau de confiança para as

médias dos tempos de resposta da operação SubjectSearch, usando CRML, MRL e RR2.

A ANOVA mostra que as médias dos tempos de resposta das diferentes soluções são

significativamente diferentes.

Tabela A.1: ANOVA para tempo de resposta médio da operação SubjectSearch.

F Value 103,97

Pr(>F) 1,277e-11

A Tabela A.2 apresenta as diferenças entre as médias dos tempos de resposta da CRML

e das outras soluções, calculadas a partir de bootstrapping. O resultado mostra que as

médias dos tempos de resposta das soluções MRL e RR2 são significativamente maiores

que as médias dos tempos de resposta da CRML.

Tabela A.2: Diferenças dos tempos de resposta médios da operação SubjectSearch entre

CRML e outras soluções (Cenário com 30% de controle do ADNS).

Limite Superior Limite Inferior

MRL 2,591 3,237

RR2 2,647 3,582
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A.2 Tempo de Resposta para Seleção Adaptativa de

Servidores via Clientes

A Figura A.2 apresenta as médias dos tempos de resposta de 35 simulações que comparam

diferentes soluções de seleção de servidores via clientes (RR4, BS5 e AD6) no cenário

favorável à BS (Cenário 1 - Seção 5.5). As médias são apresentadas com intervalo de

confiança com ńıvel de confiança de 95%.

Figura A.2: Tempos de resposta médios para o cenário 1.

A Tabela A.3 mostra o resultado da ANOVA e o seu grau de confiança para as médias

dos tempos de resposta da Figura A.2. A ANOVA mostra que as médias dos tempos de

resposta das diferentes soluções são significativamente diferentes.

Tabela A.3: ANOVA para as médias dos tempos de resposta no cenário 1.

F Value 21683

Pr(>F) < 2,2e-16

A Tabela A.4 apresenta as diferenças entre as médias dos tempos de resposta da AD

e das outras soluções, calculadas por bootstrapping. Os resultados mostram que RR e BS

apresentam médias dos tempos de resposta significativamente maiores que as médias dos

tempos de resposta da seleção adaptativa (AD).

4Round Robin
5Best Server
6Adaptative Server Selection
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Tabela A.4: Diferenças de tempos de resposta médios entre AD e outras soluções, para o

cenário 1.

Limite Superior Limite Inferior

RR 1,419 1,436

BS 0,044 0,080

A Figura A.3 apresenta as média dos tempos de resposta para 35 simulações que

comparam as diferentes soluções de seleção de servidores via clientes no cenário favorável

à RR (Cenário 2 - Seção 5.5). As médias são apresentadas com intervalo de confiança

com ńıvel de confiança de 95%.

Figura A.3: Tempos de resposta médios para o cenário 2.

A Tabela A.5 mostra o resultado da ANOVA e o seu grau de confiança para as médias

dos tempos de resposta da Figura A.3. A ANOVA mostra que as médias dos tempos de

resposta das diferentes soluções são significativamente diferentes.

Tabela A.5: ANOVA para tempo de resposta médio no cenário 2.

F Value 320,03

Pr(>F) < 2,2e-16

A Tabela A.6 apresenta as diferenças entre as médias dos tempos de resposta da AD

e das outras soluções, calculadas por bootstrapping. Os resultados mostram que RR e BS
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apresentam médias dos tempos de resposta siginificativamente maiores que as médias dos

tempos de resposta da seleção adaptativa (AD).

Tabela A.6: Diferenças de tempos de resposta médios entre AD e outras soluções, para o

cenário 2.

Limite Superior Limite Inferior

RR 0,089 0,109

BS 0,150 0,180

A.3 Tempo de Resposta para LRR

A Figura A.4 apresenta as médias dos tempos de resposta para 6 simulações que comparam

diferentes soluções de distribuição de carga (RR7, SL8 e LRR9) no cenário com um servidor

sobrecarregado (Seção 6.4.3).

Figura A.4: Tempos de resposta médios para o cenário com um servidor sobrecarregado.

A Tabela A.7 mostra o resultado da ANOVA e o seu grau de confiança para as médias

dos tempos de resposta da Figura A.4. A ANOVA mostra que as médias dos tempos de

resposta das diferentes soluções são significativamente diferentes.

7Round Robin with Asynchronous Alarm
8Smallest Latency
9Limited Redirection Rate
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Tabela A.7: ANOVA para tempo de resposta médio no cenário com um servidor sobre-

carregado.

F Value 405,28

Pr(>F) 8,812e-14

A Tabela A.8 apresenta a diferença entre as médias dos tempos de resposta da LRR

e das outras soluções, calculadas por bootstrapping. Os resultados mostram que RR e SL

apresentam médias dos tempos de resposta siginificativamente maiores que as médias dos

tempos de resposta da LRR.

Tabela A.8: Diferença de tempos de resposta médios entre LRR e outras soluções, para o

cenário com um servidor sobrecarregado.

Limite Superior Limite Inferior

RR 0,012 0,014

SL 0,013 0,015

A Figura A.5 apresenta as médias dos tempos de resposta para 15 simulações que

comparam as diferentes soluções de distribuição de carga no cenário com dois servidores

sobrecarregados (Seção 6.4.3).

Figura A.5: Tempos de resposta médios para o cenário com dois servidores sobrecarrega-

dos.

A Tabela A.9 mostra o resultado da ANOVA e o seu grau de confiança para as médias
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dos tempos de resposta da Figura A.5. A ANOVA mostra que as médias dos tempos de

resposta das diferentes soluções são significativamente diferentes.

Tabela A.9: ANOVA para tempo de resposta médio no cenário com dois servidores so-

brecarregados.

F Value 588,75

Pr(>F) <2,2e-16

A Tabela A.10 apresenta a diferença entre as médias dos tempos de resposta da LRR

e das outras soluções, calculadas por bootstrapping. Os resultados mostram que RR e SL

apresentam médias dos tempos de resposta siginificativamente maiores que as médias dos

tempos de resposta da LRR.

Tabela A.10: Diferença de tempos de resposta médios entre LRR e outras soluções, para

o cenário com dois servidores sobrecarregados.

Limite Superior Limite Inferior

RR 0,022 0,023

SL 0,024 0,028
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[65] A. M. Nakai, E. Madeira, and L. E. Buzato. Lab4WS: A testbed for web services.

In Proceedings of the 2nd IEEE International Workshop on Internet and Distributed

Computing Systems (IDCS’09), 2009.

[66] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. Pratap Singh, N. Nitin, and

R. Rastogi. Load balancing of nodes in cloud using ant colony optimization. In Pro-

ceedings of the 14th International Conference onComputer Modelling and Simulation

(UKSim’2012), pages 3–8, 2012.

[67] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M. Maggs, and T. C. Mowry. A

scalability service for dynamic web applications. In Proceedings of the 2nd Biennial

Conference on Innovative Data Systems Research (CIDR’2005), pages 56–69, 2005.

[68] J. Osrael, L. Froihofer, M. Weghofer, and K. M. Göschka. Axis2-based replication
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[76] X. Ren, R. Lin, and H. Zou. A dynamic load balancing strategy for cloud computing

platform based on exponential smoothing forecast. In Proceedings of the 2011 IEEE

International Conference onCloud Computing and Intelligence Systems (CCIS’2011),

pages 220–224, 2011.

[77] RFC793. Transmission Control Protocol, 1981.

[78] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing Surveys, 37(1):42–

81, 2005.

[79] J. Salas, F. Perez-Sorrosal, M. Patiño-Mart́ınez, and R. Jiménez-Peris. Ws-
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