
Building a Semantic Web System for Scientific
Applications: An Engineering Approach

Renato Fileto1,3, Claudia Bauzer Medeiros1, Calton Pu2, Ling Liu2, and
Eduardo Delgado Assad3

1 Institute of Computing, University of Campinas,
Caixa Postal 6176, Campinas, SP, 13081-970, Brazil

{fileto, cmbm}@ic.unicamp.br
2 College of Computing, Georgia Institute of Technology,

801 Atlantic Drive, Atlanta, GA, 30332-0280, USA
{lingliu, calton}@cc.gatech.edu

3 Embrapa – Brazilian Agricultural Research Agency,
Av. Dr. Andre Torsello, 209, Campinas, SP, 13083-886, Brazil

{fileto, assad}@cnptia.embrapa.br

Abstract. This paper presents an engineering experience for building
a Semantic Web compliant system for a scientific application – agricul-
tural zoning. First, we define the concept of ontological cover and a set
of relationships between such covers. These definitions, based on domain
ontologies, can be used, for example, to support the discovery of services
on the Web. Second, we propose a semantic acyclic restriction on ontolo-
gies which enables the efficient comparison of ontological covers. Third,
we present different engineering solutions to build ontology views satisfy-
ing the acyclic restriction in a prototype. Our experimental results unveil
some limitations of the current Semantic Web technology to handle large
data volumes, and show that the combination of such technology with
traditional data management techniques is an effective way to achieve
highly functional and scalable solutions.

1 Introduction

POESIA (Processes for Open-Ended Systems for Information Analysis) [4, 5]
pursues the Semantic Web vision [1, 13] to bring about solutions for resources
discovery and composition on the Web. The foundations of POESIA are: (1)
Web services to encapsulate data sets and processes; (2) workflow technology to
manage complex processes; and (3) domain ontologies to drive the description,
discovery and composition of resources. POESIA’s mechanisms for composing
Web services appear in [5], and its methods for tracking data provenance and
support data integration appear in [6].

This paper focuses on the design and implementation challenges of handling
domain ontologies in POESIA. In particular, it points out the obstacles met in
loading and using domain ontologies in application programs, and describes the
solutions implemented in a prototype. Rather than forcing applications to deal

M. Kitsuregawa et al. (Eds.): WISE 2005, LNCS 3806, pp. 633–642, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

634 R. Fileto et al.

with large, cumbersome ontologies, we propose ontology views satisfying the
acyclic restriction to enable efficient automated means to discover and compose
Web services based on domain specific knowledge. In these ontology extracts, one
can determine the relative order of ontology terms by directed graph traversal
or just one string comparison, instead of using inference engines, for example.

The experimental results of our implementation effort give an insight on the
limitations of the current Semantic Web technology, when faced with applications
using large data sets. The combination of Semantic Web standards and tools
with conventional data management techniques provides more efficiency and
scalability than the solutions based purely on Semantic Web technologies.

2 Motivating Application: Agricultural Zoning

This research has been inspired by the need of versatile tools to support scien-
tific applications on the Web, and more specifically the development of decision
support systems for agriculture. One example of an application in this domain
is agricultural zoning – a scientific process that classifies the land in a given ge-
ographic region into parcels, according to their suitability for a particular crop,
and the best time of the year for key cultivation tasks (such as planting, har-
vesting, pruning, etc). The goal of agricultural zoning is to determine the best
choices for a productive and sustainable use of the land, while minimizing the
risks of failure. It requires looking at many factors such as climate, regional
topography, soil properties, crop requirements, social and environmental issues.

Typically, this kind of application involves intricate data processing activities
across different organizations. Agricultural zoning relies on data from a variety
of heterogeneous sources, including sensors that collect data on physical and bio-
logical phenomena (e.g., weather stations, satellites, and laboratory automation
equipment). These data may be stored in a variety of databases, with different
spatial, temporal and thematic scopes. Domain experts combine these data, in
multiple steps of a multi-institucional process, in order to produce, for exam-
ple, maps showing the suitability of the lands of a particular state for planting
soybeans in different periods of the year.

3 Solution Context

POESIA relies on Web services [2] to encapsulate data sets and processes, so that
Web standards and protocols ensure interoperability among different platforms.
Ontologies, which can also be published and looked up through Web services,
play another key role in POESIA. They provide a shared conceptualization to
drive the description, discovery and composition of distributed resources.

3.1 General Architecture

Figure 1 illustrates the general architecture of a POESIA supporting system. In
the right bottom corner, it shows the three kinds of POESIA servers connected

Building a Semantic Web System for Scientific Applications 635

Fig. 1. POESIA’s architecture

through the Internet: application servers, ontology servers, and service brokers.
An Application Server maintains a local data set and a collection of service def-
initions that provide external access to local resources. Mechanisms for creating
composite services are specified and managed by means of workflows, so that
arbitrarily complex processes can be built from other processes [5].

An Ontology Server offers encapsulated access to a set of ontologies about
different domains (e.g., agriculture, logistics), with adaptation means for par-
ticular application needs, including the extraction of ontology views. A Services
Broker is a catalog of resources that centralizes the discovery of services us-
ing ontology views. The sharing of an ontology view among application servers
and service brokers enables the semantic-driven discovery and composition of
services.

3.2 An Ontology for Agriculture

As part of the effort to implement and validate POESIA, we have developed an
ontology to support agricultural zoning. This ontology is divided in dimensions –
ontology portions referring to particular agricultural concerns and disconnected
from each other. Figure 2 illustrates the Territory dimension, depicting 3 lay-
ers of geographic data that refer to independent territorial partitions: political
divisions, ecological regions and hydrological basins. These layers have Country,
Eco Region and Macro Basin as their respective top classes.

Each rectangle in Figure 2 represents a class. Edges ending with a diamond
represent specialization relations (of type IS A) – the class at the diamond side
is a subclass of the class in the other end of the edge. Aggregation relations (of
type PART OF) are represented by edges with a black circle on the side of the
class playing the constituent role. Other dimensions of the agriculture ontology
(e.g., Agricultural Product) are also represented with the basic constructs
described above.

636 R. Fileto et al.

Fig. 2. The Territory dimension

4 Using the Domain Ontology

A POESIA ontology view has the form of a directed acyclic graph Σ, whose nodes
refer to terms that can be concepts (e.g., Country) or instances of concepts (e.g.,
Country(Brazil)). The directed edges of Σ refer to semantic relations between
terms (instantiation, specialization or aggregation). Edges are oriented
from the general to the instantiated, specialized or constituent terms. These
semantic relations induce a partial order among the terms [5], determined by
the relative positions of these terms in the ontology graph. Imposing the acyclic
restriction preserves the semantic contents of the original ontology, because it
requires removing just inverse relations (e.g., remove generalizations while main-
taining the corresponding specialization relations). Figure 3 shows a POESIA
ontology view, where instances of some classes from the ontology dimension of
Figure 2 appear in the right bottom corner.

4.1 The Encompass Relation, Ontological Covers and Service Scope

Let t and t′ be two terms of an ontology view Σ. We say that t encompasses t′,
denoted by t |= t′, if and only if there is a path in Σ leading from t to t′, i.e., a
sequence of instantiations, specializations and/or aggregations relating t to t′.

The encompass relation is transitive – if Σ has a path from t to t′ and an-
other path from t′ to t′′, then Σ has a path from t to t′′. In the right bottom corner
(Territory dimension) of the view in Figure 3, for example, Country(Brazil)
|= State(RJ) and State(RJ) |= State(RJ).County(Valena). The string
State(RJ).County(Valena) represents the path to the term County(Valena)
in Rio de Janeiro State.

An ontological cover is a tuple of terms taken from different dimensions of an
ontology view. For instance, the ontological cover [Orange, Country(Brazil)]
is a tuple of terms from two dimensions of a POESIA view of the agricultural
ontology – Agricultural Product and Territory.

Building a Semantic Web System for Scientific Applications 637

Fig. 3. An ontological cover in the agriculture ontology

An ontological cover attached to a Web service plays the role of metadata,
describing the utilization scope of that service. We thus define the service scope
as the transitive closure of the nodes reachable from the terms of the onto-
logical cover associated with a particular service. Hence, the ontological cover
[Orange, Country(Brazil)], when attached to a Web service providing access
to agricultural production data, indicates that data from that service refer to
the production of Oranges in Brazil. Figure 3 illustrates the composition of an
ontological cover in which the term Institution(Embrapa) expresses the uti-
lization scope in the Organization dimension, Orange in the Product dimension
and Country(Brazil).Region(SE) in the Territory dimension.

4.2 Relations Between Ontological Covers and Services Discovery

The encompass relation between terms gives rise to corresponding relations
between ontological covers. For simplicity, let us consider that an ontological
cover has exactly one term for each dimension1. Given two ontological covers,
OC = [t1, · · · , tn] and OC′ = [t′1, · · · , t′n] (n ≥ 1), where ti ∈ OC and t′j ∈ OC′

are terms from the same ontology view Σ, OC and OC′ may be disjoint or satisfy
one of the following relations.

Overlapping: OC overlaps OC′ if and only if:
1. ∀ t ∈ OC : ∃ t′ ∈ OC′ such that t |= t′ ∨ t′ |= t
2. ∀ t′ ∈ OC′ : ∃ t ∈ OC such that t |= t′ ∨ t′ |= t

Encompassing: OC |= OC′ if and only if:
1. ∀ t ∈ OC : ∃ t′ ∈ OC′ such that t |= t′

2. ∀ t′ ∈ OC′ : ∃ t ∈ OC such that t |= t′

1 Multiple terms referring to the same dimension are considered in [4, 5].

638 R. Fileto et al.

Equivalence: OC ≡ OC′ if and only if:
1. ∀ t ∈ OC : ∃ t′ ∈ OC′ such that t |= t′

2. ∀ t′ ∈ OC′ : ∃ t ∈ OC such that t′ |= t

Overlap is bidirectional and the weakest of these relations. The encompass
relation, on the other hand, only accepts encompassing relations between terms
in one direction. The equivalence relation requires that each pair of terms taken
from the two ontological covers reciprocally encompass each other. Finally, two
ontological covers are disjoint if they do not overlap each other in at least one
dimension, i.e., there is a term in one of the covers that does not encompass
neither is encompassed by any term of the other cover.

The encompass, overlap and equivalence relations between ontological covers
are reflexive and transitive, and the two latter are also symmetric. The transitive-
ness of these relations induces a partial order among ontological covers referring
to the same ontology.

Services discovery can be understood as an ontology based query. More specif-
ically, a service discovery request is stated as a query specified in the same way
as an ontological cover, i.e., as a collection of terms from a POESIA ontology
view. The query processing corresponds to investigating relations between the
query and the service scopes, all of which are expressed by ontological covers.
The services satisfying a query q are those whose ontological covers overlap q.

5 Engineering Considerations: Design and Implementation

Our ontology for agriculture has been built with Protg [9], an open-source
graphic tool for ontology construction. POESIA’s current implementation ac-
cepts ontologies in the RDF format [11] exported by Protg.

The acyclic restriction imposed on ontology views enables more efficient al-
gorithms for comparing ontological covers than using, for example, inference
engines to process a full ontology. Thus, our engineering solution to handle on-
tologies in POESIA involves three aspects: (i) use views tailored for particular
applications, thereby reducing the number of terms and relations to be handled;
(ii) restrict these ontology views to directed acyclic graphs (DAGs) or trees, in
order to enable efficient algorithms to check relations between ontological covers;
(iii) adopt a procedural approach to ontology management, backed by databases
to attain persistence and scalability.

Our view extracting algorithm is analogous to that of [8], as it works by
traversing the ontology graph. The view specification consists of three sets:
starting classes, intermediate classes and properties (semantic relationships) to
traverse. The algorithm traverses the class and instances hierarchy from the
starting classes, including in the view only the classes, instances and proper-
ties contained in the view specification. The classes and properties of the view
specification must ensure the acyclic restriction.

OntoCover, our prototype Java package for building ontology views, uses
the Jena toolkit [15] to parse and handle RDF statements. The RDFS (RDF-
Schema) file delineates the classes, subclasses and properties of an ontology,

Building a Semantic Web System for Scientific Applications 639

with tags marking the classes and properties of the view specification described
above. The RDF file, on the other hand, contains the instances of those classes
and their respective properties. Jena loads RDF/RDFS files in memory or in a
database management system (DBMS) and allows navigation in the RDF triples
through the Jena API or the RDQL query language [12]. The DBMS provides
persistence and scalability for large ontology specifications.

We construct an ontology view by using Jena in two steps: (1) load in RAM
the RDFS that specifies the ontology view; and (2) manipulate this RDFS spec-
ification via Jena API to generate the view, considering three alternatives for
getting the many instances of the ontology classes to include in the view:

RAM: use Jena to parse RDF specifications from files into an auxiliary data
structure in RAM, manipulated via the Jena API to build the view tree;

DB RDF: use the Jena API to handle ontology instance data stored in Post-
greSQL [10] as RDF triples;

DB Conventional: take instances from a PostgreSQL database that contains
one table per ontology class.

The database schema used by Jena to store RDF triples in the DBMS –
for the DB RDF strategy – appears in [15]. The schema employed by the DB
Conventional strategy to maintain the Territory dimension instances (for our
experiments) is the one presented in Figure 2, regarded as an entity-relationship
diagram, i.e., when each rectangle represents an entity and each edge represents
a 1:N relationship, with the diamond or black circle in the N side.

6 Performance Evaluation

6.1 Comparing Ontological Covers on Ontology Views

Using views with the acyclic restriction, one can efficiently determine semantic
relations between ontology terms. In a tree-like ontology view, determining if a
term t encompasses another term t′ reduces to checking if the string representing
the path from a root o of the view to t is the head of the string representing the
path from o to t′. Therefore, the problem is solved by just one string comparison.
In a DAG-like view, one can use graph search algorithms to determine if there
is a path from t to t′. These algorithms run in linear time for the ontology views
used in agricultural zoning applications, because these views have the number
of edges (semantic relations) proportional to the number of nodes (terms).

6.2 View Construction

Given our engineering option for ontology views satisfying the acyclic restriction,
the bottleneck has been the memory and time necessary for extracting the views.
Therefore, we focused our experiments on this part of the solution, comparing the
alternatives described in Section 5 for managing ontologies stored as RDF/RDFS
files and relational databases.

640 R. Fileto et al.

Our experiments used the ontology described in Section 3.2. Instances for
the Territory dimension of this ontology were provided by IBGE (Brazilian
Institute of Geography and Statistics), yielding an ontology view graph with
more than 15000 nodes, to allow experiments with large volumes of data. These
experiments ran on Linux (Red Hat 8), in a 1.6 GHz Pentium IV machine, with
512 megabytes of RAM.

Figure 4 presents the results of some experiments on constructing tree-like
views of the agriculture ontology, with chunks of increments of 1000 nodes, as
shown in the X-axis. The Y-axis represents the time to build the view (Fig-
ure 4(a)) or the memory use (Figure 4(b)). We compare the strategies described
in Section 5; namely, RAM, DB RDF and DB Conventional. For the RAM strategy,
we consider the time to parse RDFS and RDF, plus the time to build the tree by
handling these RDF specifications in memory. DB RDF and DB Conventional,
on the other hand, rely on the efficiency of a DBMS to manage large data sets
in persistent memory. These strategies only load RDFS as a whole in memory,
and query individual instances of the ontology in a PostgreSQL database mod-
eled as RDF triples (DB RDF) or as a conventional schema (DB Conventional).
The memory use is the peak of memory allocation for loading the necessary
RDF/RDFS triples and build the view.

Fig. 4. Comparing alternative schemes for generating ontology views

The running time measurements of Figure 4(a) show that DB Conventional
is the fastest strategy. RAM is slightly slower than DB Conventional for large data
sets, because of the burden of parsing RDF files, as opposed to efficiently taking
instances from an indexed database via queries. DB RDF is by far the slowest
alternative. This bad performance is probably due to the way RDF breaks the
data about each instance – one RDF triple for each field value – leading to
additional levels of indirection. Another advantage of DB Conventional over
the other two strategies is that it uses a secondary index on the label values to
order the position of sibling nodes in the ontology view. This ordering facilitates
browsing the ontology view in the user’s interface.

Building a Semantic Web System for Scientific Applications 641

Figure 4(b) shows that the RAM strategy consumes the largest amount of
memory. Both DB Conventional and DB RDF are more economical, because they
do not require the construction of intermediate data structures in memory and
take advantage of a database to load large sets of instances. DB Conventional
is slightly more economical than DB RDF, perhaps due to Jena’s housekeeping
procedures for memory management. Therefore, the DB Conventional strategy
is both fast and economical in terms of memory consumption.

7 Related Work

The Semantic Web [1, 13] foresees a new generation of Web based systems, tak-
ing advantage of semantic descriptions to improve the functionalities of current
syntax-based data processing, and provide enhanced facilities in semantic aware
open-ended information systems. Although much research effort has been di-
rected to Semantic Web issues, few studies yet address engineering challenges,
domain-specific issues, and the impact of ontology structure and ontology size,
for example, on system design and performance.

The need for mechanisms to handle ontologies for semantic Web applica-
tions is recognized and addressed in [3, 8, 14, 7]. Dameron et al. [3] analyze some
categories of ontology manipulation facilities necessary in a semantic Web infra-
structure. They propose an architecture for offering facilities such as generation
of ontology views, mapping between ontologies and reasoning, via Web services.
Noy et al. [8] formalize the specification of ontology views by traversal – the
same strategy employed in our prototype. Different mechanisms to express on-
tology views, such as using set operators on sets of classes and properties and
restructuring hierarchies of classes are described in [14, 7]. Our traversal scheme
is simpler and adherent to the POESIA approach and our applications.

8 Conclusions

This paper has considered implementation issues for loading, adapting and using
domain ontologies for service discovery and composition on the Web. The main
contributions are: (1) carrying out facilities adhering to the Semantic Web in a
scientific application for the agricultural domain; (2) introducing the mechanism
of ontological cover and a set of well defined relations among such covers to
describe and recover services according to domain specific knowledge; (3) using
ontology views with the acyclic restriction to enable the efficient manipulation of
domain ontologies in applications. By using ontology views satisfying the acyclic
restriction, we reduce a semantic problem (relating terms in an ontology), to a
syntactic one (graph traversal or string comparison), without loss of semantic
information. Our experimental results point out some shortcomings of current
Semantic Web tools to handle large data volumes on producing ontology views,
and we provide solutions to overcome these limitations. Though these results
were presented in the context of a case study in agriculture, they apply to several

642 R. Fileto et al.

domains and a wide class of applications that can benefit from the use of ontology
views to manage data and services on the Web.

Acknowledgments. Authors from Campinas University were partially sup-
ported by Embrapa, CAPES, CNPq and projects MCT/PRONEX/SAI and
CNPq/WebMaps. Authors from Georgia Tech were partially supported by two
grants from the Operating Systems and ITR programs (CISE/CCR division) of
NSF, by a contract from the SciDAC program of DoE, a contract from the PCES
program (IXO) of DARPA, a faculty award and a SUR grant from IBM. Lauro
Ramos Venncio has supplemented the experiments described on Section 6.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

2. F. Casati and U. Dayal (editors). Special issue on web services. IEEE Data
Engineering Bulletin, 25(4), 2002.

3. O. Dameron, N. F. Noy, H. Knublauch, and M. A. Musen. Accessing and manip-
ulating ontologies using web services. In Intl. Semantic Web Conference (ISWC),
Semantic Web Services Workshop, 2004.

4. R. Fileto. The POESIA Approach for Integrating Data and Services on the Se-
mantic Web. PhD thesis, Inst. of Computing, Campinas University, Brazil, 2003.

5. R. Fileto, L. Liu, C. Pu, E. D. Assad, and C. B. Medeiros. POESIA: An ontological
workflow approach for composing web services in agriculture. The VLDB Journal,
12(4):352–367, 2003.

6. R. Fileto, C. B. Medeiros, L. Liu, C. Pu, and E. D. Assad. Using domain ontologies
to help track data provenance. In Proc. Brazilian Symposium on Databases, pages
84–98, 2003.

7. A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
semantic web through RVL lenses. In Intl. Semantic Web Conference (ISWC),
pages 96–112, 2003.

8. N. F. Noy and M. A. Musen. Specifying ontology views by traversal. In Intl.
Semantic Web Conference (ISWC), pages 713–725, 2004.

9. N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A.
Musen. Creating semantic web contents with Protg-2000. IEEE Intelligent Sys-
tems, 16(2):60–71, 2002.

10. PostgreSQL. http://www.postgresql.org/ as of September 2003.
11. W3C’s Resource Description Framework (RDF). http://www.w3.org/RDF/ (as of

October 2003).
12. W3C’s RDF Query Language (RDQL). http://www.w3.org/Submission/RDQL/

(as of November 2004).
13. W3C’s Semantic web Activity. http://www.w3.org/2001/sw/ (as of July 2004).
14. R. Volz and D. Oberlea nd R. Studer. Implementing views for light-weight web

ontologies. In Intl. Database Engineering and Applications Symp. (IDEAS). IEEE
Computer Society, 2003.

15. K. Wilkinson, C. Sayers, and H. Kuno. Efficient RDF storage and retrieval in
Jena2. In Proc. Intl. Workshop on Semantic Web and Databases, pages 131–150.
Humboldt-Universitt, 2003.

http://www.postgresql.org/
http://www.w3.org/RDF/
http://www.w3.org/Submission/RDQL/
http://www.w3.org/2001/sw/

	Introduction
	Motivating Application: Agricultural Zoning
	Solution Context
	General Architecture
	An Ontology for Agriculture

	Using the Domain Ontology
	The Encompass Relation, Ontological Covers and Service Scope
	Relations Between Ontological Covers and Services Discovery

	Engineering Considerations: Design and Implementation
	Performance Evaluation
	Comparing Ontological Covers on Ontology Views
	View Construction

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

