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Abstract

This paper presents a real time system to guide the
search and the retrieval in fingerprint image databases con-
sidering both retrieval accuracy and speed. For that pur-
poses, we use multiresolution-based feature extraction and
indexing methods considering the textural information in-
herent to fingerprint images. The extracted feature vectors
are used to compute the distance between the fingerprint
query image to all the fingerprints in the database and the
N most similar images are then retrieved. The focus of this
work is to study the utility of multiresolution transforms on
the domain of fingerprint recognition.

1. Introduction

Biometrics, which refers to the automatic recogni-
tion of individuals by their physical and/or behavioral
characteristics, has emerged as a motivating and insti-
gating research field [13]. In fact, several biometric ap-
plications have been adopted in civilian, commercial
and forensic areas. Traditionally, the physical charac-
teristics used for human recognition include: finger-
prints [10], iris [24], retina [9], and face [25], while the be-
havioral ones include: signature [19], voice [5], and gait [2].

Among all these biometric characteristics, finger-
prints are considered one of the most reliable characteristic
for human recognition due to their individuality and persis-
tence [20]. The fingerprint’s individuality means that it is
unique across individuals and across fingers of the same in-
dividual, even in identical twins [12]. On the other hand,
the fingerprint’s persistence means that the basic finger-
print characteristics do not change with time.

The popularity of fingerprint-based recognition have led
to large-scale databases. While the large size of these col-

lections compromise the retrieval speed, the noise and the
distortion that can be found in fingerprint images may re-
duce the overall retrieval accuracy. Therefore, both retrieval
accuracy and speed play an important role in the fingerprint
recognition process.

Roughly speaking, there are two kinds of approaches that
can be employed to reduce the retrieval speed, namely ex-
clusive and continuous classification. The former uses
some high-level characteristics to partitionate the finger-
print database into mutual exclusive bins. Once the fin-
gerprint query image is classified, it will be searched only
in its corresponding bin. In the latter, the fingerprint im-
ages are represented by feature vectors. Similarities among
fingerprint images are established by the distance in the fea-
ture space of their corresponding feature vectors. This ap-
proach is closely related to a fingerprint database index-
ing problem.

The objective of both approaches is to characterize the
fingerprint images by some global information for index-
ing purposes, instead of offering some kind of discrimi-
natory information for recognition. Typically, the global
information is obtained by studying the patterns in the cen-
tral region of the fingerprints formed by their ridge
structure. In this context, we propose an original con-
tinuous approach to guide the search and the retrieval in
fingerprint image databases. We study particularly the tex-
tural patterns presented in the central region of fingerprints
in order to generate feature vectors used for fingerprint in-
dexing and retrieval. In our approach, the texture features
are extracted by multi-scale transforms: Steerable Pyra-
mid (SP [6]) and different types of the Wavelet Transform,
which include: Gabor Wavelet Transform (GWT [14, 18])
and Tree-Structured Wavelet Transform (TSWT) us-
ing Orthogonal (Haar, Daub 4-Tap, Daub 8-Tap and Daub
16-Tap [3, 17]) and Bi-orthogonal (Spline [22]) Filter-
banks.



In the case of the Steerable Pyramid different orienta-
tion filters and decomposition levels are used to generate
a translation and rotation-invariant fingerprint representa-
tion. In the GWT, different scales and orientations are used
to capture the relevant texture information, whereas in the
TSWT the image texture content is captured on the low
frequency subband, while the high frequency subbands are
used to capture the image variations in different directions.

The remainder of this paper is organized as follows. Next
section presents the contributions of our work, while sec-
tion 3 reviews some related approaches. Section 4 presents
the architecture of our system. The module used for detect-
ing the center point region of the fingerprints is presented in
section 5. The various features extracting algorithms are de-
scribed in section 7. The premilinary results of our experi-
ments, are discussed in section 8. Finally, our conclusions
are described in section 9.

2. Objectives and Contributions

Although search spaces can be reduced in exclusive clas-
sification approaches, there are some shortcomings that
should be considered: (1) some fingerprints present prop-
erties of more than one class and therefore they cannot be
assigned into just one bin, (2) the natural distribution of fin-
gerprints is not uniform and therefore even performing bin-
ning in the original database, the number of one-to-many
comparisons can still be high, and (3) some of the finger-
print characteristics used for binning are not easy to detect
due to the presence of noise and distortions. Therefore, there
are still some open questions that should be answered, such
as: (1) is it possible to reduce the searching space consider-
ably without classifying fingerprints? (2) which fingerprint
information should be considered for that purposes? (3) how
can be the query processing time improved? and (4) how
can fingerprint images stored and indexed efficiently?

In our work, we plan to address these opening chal-
lenges. For that purposes, we propose a method to char-
acterize fingerprints by using feature vectors to summarize
their principal textural and directional properties. The fin-
gerprint candidates are then retrieved from the database by
comparing the distance of their feature vectors. The smaller
the distance is, the more similar the images are. Theoret-
ically, our approach will present the following advantages
over exclusive classification: (1) since fingerprints are rep-
resented by feature vectors, then the ambiguity of classifica-
tion is resolved, because they are not represented by a single
class, (2) depending on the accuracy expected for the sys-
tem, some parameters referred to search radius and number
of nearest neighbors can be configured and adjusted, and (3)
continuous classification can be treated as a fingerprint im-
age retrieval problem and therefore we want to prove the

suitability of Content-based Image Retrieval (CBIR) tech-
niques for fingerprint indexing and retrieval.

3. Related Work

To the best of our knowledge, there are mainly two works
that address the problem of fingerprint identification as a
fingerprint database indexing problem.

Germain et al. [7] proposed a continuous system to in-
dex fingerprint databases using flash hashing. Their system
is composed by two associative memory structures, namely,
multimap and map. During the fingerprint feature extrac-
tion process, some information related to the feature vec-
tors is generated in order to create indices that could be the
same for different fingerprints. Each of these indices is then
added to the multimap memory structure. During the re-
trieval process, each of the generated indices of the query
image is used to retrieve the image candidates, that are pre-
sented by the same indices. The map memory structure is
then used to store the references of the image candidates to-
gether with some parameters that characterize the geomet-
ric transformation between two pairs of feature vectors as
well as a score value used for sorting the list of image can-
didates. The feature vectors are composed by a set of triplets
(x, y, θ), where the three parameters represent the location
and orientation of each of the minutiaes. In order to cre-
ate a more robust method, they also considered the num-
ber of ridges between minutiaes. Thus, a set of triangles
that resemble one another can be constructed. The num-
ber of matching triangles serves as the basis for determining
whether two pair of fingerprints are the same or not. They
showed also that by using this approach the average query
time decreased mainly due to the reduction of I/O opera-
tions.

Another example is the work proposed by Tan [21]. It
presents a comparison between an exclusive and a contin-
uous classification method. For the exclusive classification
method, they used Genetic Programming to generate some
compositing operators that are applied to the features ex-
tracted from the orientation field of the image. For classifi-
cation purposes, a Bayesian classifier was used. The fitness
parameter value was adjusted considering the classification
result. The continuous classification method used, followed
the work proposed by Germain et al. [7]. The main differ-
ence is that their system has two steps, instead of just one.
As a result of the indexing process, a list of candidates is
retrieved according to the similarity between feature val-
ues. For verification purposes only the top N candidates are
used. The identification score is calculated as the number
of corresponding triangles between the query image and the
candidates. The triangles are formed by the location of the
minutiaes. They also concluded that the search space and
the false acceptance rate (FAR) were reduced when com-



paring the continuous classification method with the exclu-
sive one.

Although the search spaces are reduced in both ap-
proaches ([7, 21]), they are mainly based on some singu-
larities presented in fingerprint images. Besides, the accu-
rate detection of these singularities depend highly on the
quality of the fingerprint images and their computation of-
ten involves some computational resources that will affect
directly the fingerprint recognition time. On the other hand,
they both use flash hashing for indexing purposes and we
believe that by using metric access methods the query pro-
cessing time will be improved. Thus, as seen in Table1,
we will consider more specifically the textural and direc-
tional information presented in fingerprints for feature ex-
traction purposes, since they both retain the discriminating
power of fingerprints and Metric Access Methods for their
indexing.

4. System Overview

The architecture of our proposed framework, pre-
sented in Figure 1, can be divided into two main subsys-
tems, namely, the enrollment- and the query-subsystem.
The enrollment-subsystem acquires the information that
will be stored in the database for later use. On the other
side, the query subsystem is responsible for retrieving sim-
ilar fingerprints from the database according to the user’s
fingerprint query image. Our system operates as fol-
lows:

1. Enrollment-subsystem: several fingerprint images are
first captured (arrow labeled 1 in Figure 1) and a Re-
gion of Interest (ROI) within the fingerprint is marked
(module 1, arrow 2) by a center point area detection
module. A region of64 × 64 pixels is used for mark-
ing the ROI. The feature extraction algorithms con-
tained in the descriptor library (module B, arrow 3) are
used by the feature extraction module to generate the
features (arrow 4) that are indexed by a metric access
method for further use.

2. Query-subsystem: a fingerprint query image is re-
ceived as input from the user (arrow 1). Once, the fin-
gerprint ROI is detected (module A, arrow 2) the
feature extraction algorithms contained in the descrip-
tor library are used to extract the feature vectors from
the query image (module B with arrows 3 and 4, re-
spectively). The query image feature vector is used
to rank the database images according to their sim-
ilarity to the query image (module C). For that pur-
poses, a distance computation algorithm is selected
from the descriptor library (arrow 5) and the met-
ric access method is used to speed up the retrieval
(arrow 6). Finally, the most similar database im-

ages are ranked (arrow 7) and returned to the user
(arrow 8).

Figure 1. Architecture of our proposed sys-
tem.

5. Center Point Area Detection

In order to detect the fingerprint center point area, we
first locate the core point, that correspond to the uppermost
point contained in the inner-most ridge line. We have cho-
sen the core point as the basis of the center area detection,
because: (1) it mostly appears in the central part of the fin-
gerprint and, (2) is more frequently than deltas [23]. The
steps used for core detection are [11]:

1. Estimation and smoothing of the directional fields of
the fingerprint input image.

2. Computation of the Poincaré index, in each(8 × 8)
block. This index is defined as follows:

Poincare(i,j)=
1

2π

N−1
∑

k=0

∆(k) (1)

∆(k) =







δ(k) if |δ(k)| < π
2

π + δ(k) ifδ(k) ≤ −π
2

π − δ(k) otherwise
(2)

δ(k) = θ(X(k
′

), Y (k
′

)) − θ(X(k), Y (k)) (3)

wherek
′

= (k + 1) mod (N) andθ(i, j) is the direc-
tional field of the fingerprint image.X(k) andY (k)
are the coordinates of the blocks that are in the closed
curve with N blocks. If the Poincaré index has a value
of 1/2, then the current block is the core block. The



center of this block is then the core point. If more than
two cores are detected, go back to step1 using a larger
smoothing parameter for the directional fields.

Once the center point is obtained, a center point area can be
easily defined. An image of size64 × 64 pixels around the
core point is then cropped.

6. Multiresolution Methods

In this section, we present the multiresolution methods
used for capturing the textural information presented in the
fingerprint center point area.

6.1. Steerable Pyramid

The Steerable pyramid is a linear multi-orientation and
multi-scale image decomposition method, by which an im-
age is subdivided into a collection of subbands localized
at different scales and orientations [6]. This decompo-
sition transform is based on convolution and decimating
operations and has the advantage that the subbands are
translation- and rotation-invariant. Using a high- and low-
pass filter (H0, L0) the input image is initially decomposed
into high- and low-pass subbands. The low-pass subband is
further decomposed into a total of k-oriented band-pass por-
tionsB0, . . . , Bk and into a lowpass subbandL1. The recur-
sive decomposition is done by subsampling by a factor of 2
along the rows and columns the lower low-pass subband.
The decomposition process of the first level of the Steer-
able Pyramid is shown in Figure 2.

Figure 2. First Level of Steerable Pyramid De-
composition.

6.2. Tree-Structured Wavelet Transform

The Wavelet Transform is computed by applying a pair
of filters (a lowpass filter H and a highpass one G) to a sig-
nal and then by downsampling the filtered signals by a fac-
tor of two. A discrete two dimensional Wavelet transform
can be defined as:

Lj =
[

Hx ∗ [Hy ∗ Lj−1]↓2,1

]

↓1,2

(4)

Dj1 =
[

Hx ∗ [Gy ∗ Lj−1]↓2,1

]

↓1,2

(5)

Dj2 =
[

Gx ∗ [Hy ∗ Lj−1]↓2,1

]

↓1,2

(6)

Dj3 =
[

Gx ∗ [Gy ∗ Lj−1]↓2,1

]

↓1,2

(7)

where the operator * refers to the convolution opera-
tor, ↓2,1 (↓1,2) represent the image downsampling along
the rows and columns andL0 = I is the original im-
age.Lj represent the low resolution image at scalej ob-
tained by lowpass filtering.Dji / i ∈ {1, 2, 3} are the detail
images obtained by highpass filtering and they contain di-
rectional detail information at scalej. Thus, a multi-scale
representation of depthd of the imageI can be build con-
sidering the subimages at several scales:Ld, Dji, where
i = {1, 2, 3} andj = {1, 2, . . . , d} [4].

In the TSWT, it is possible to decompose recursively the
output of each of the subbands (Ld, Dj1, Dj2, Dj3) [1]. For
the sake of pattern retrieval, a fixed decomposition struc-
ture is convenient, since if facilitates distance computations
and hence database browsing. Considering that the subband
Dj3 leads often to unstable features, recursively decompo-
sition is done in the other subbands.

6.3. Gabor Wavelet Transform

A general 2-D Gabor functionψ(x, y) is defined as:

ψ(x, y) =

(

1

2πσxσy

)

exp

[

−1

2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πjWx

]

(8)
where the spatial coordinates(x, y) denote the centroid lo-
calization of the elliptical Gaussian window. The parame-
tersσx andσy are the space constants of the Gaussian en-
velop along the x- and y-axes, respectively. The Fourier
transformG(u, v) of the Gabor functionψ(x, y) can be
written as:

G(u, v) = exp

[−1

2

(

(u−W )2

σ2
u

+
v2

σ2
v

)]

(9)

where W represents the frequency of the sinusoidal
plane along the horizontal axis and the frequency com-
ponents in x- and y-direction are denoted by the pair
(u, v), while σu = 1/2πσx andσv = 1/2πσy. Consid-
ering the non-orthogonal basis set formed by the Gabor
functions, a localized frequency description can be ob-
tained by expanding a signal with this basis.
Self-similar class functions, known as Gabor Wavelets,



can be generated by dilations and rotations of the mother
waveletψ(x, y), i.e.:

ψm,n(x, y) = amψx
′
,y

′ , a > 1 (10)

consideringm = 1, . . . S andn = 1, . . .K. S and K denote
the total number of dilations and orientations, respectively,
and:

[

x
′

y
′

]

= a−m

[

cosθn sinθn

−sinθn cosθn

] [

x
y

]

(11)

whereθ = nπ/K and θ is the rotation angle. To en-
sure that the energy is independent of m, a scale factora−m

is introduced. Considering the redundant information pre-
sented in the filtered images due to the non-orthogonality of
the Gabor Wavelets, Manjunath et al. [18] designed a strat-
egy to reduce the redundancy of the Gabor Wavelets Filter-
bank, where the half-peak magnitude of the filter responses
touch each other in the frequency spectrum:

a =

(

Uh

Ul

)
1

S−1

σu =
(a− 1)Uh

(a+ 1)
√

2ln2
(12)

σv = tan
( π

2K

)

[

Uh − 2ln2

(

σ2

u

Uh

)] [

2ln2 − (2ln2)2σ2

u

U2

h

]− 1

2

(13)
whereW = Uh. The parametersUh andUl are used, re-

spectively, to denote the upper and lower center frequencies
of interest.

7. Feature Extraction

To generate the feature vectors some statistical measures
are used to compute the feature vectors. More precisely, the
meanµmn and the standard deviationσmn of the energy
distribution of the multiresolution transform coefficients are
used to capture the fingerprint textural information and thus
to form the feature vector f:

µmn =
1

MN

∫∫

|Wmn(x, y)| dxdy (14)

σmn =

√

∫∫

(Wmn(x, y) − µmn)
2
dxdy (15)

Consideringk = 16 orientation subbands andl = 6 de-
composition levels, the feature vector for the case of the
Steerable Pyramid is generated as follows:

~f
SP

= [µ11, σ11, µ21, σ21, . . . , µk1, σk1,
µ1l, σ1l, µ2l, σ2l, . . . , µkl, σkl]

(16)

For the Tree-Structured Wavelet Transform the values of
|Wmn(x, y)| correspond to the energy distribution in one of
the three subbands: LL, LH, and HL. Thus, the subindices

m andn are integers that stand for the decomposition level
and the current subband (m = 1, 2, . . . , L andn = 1, 2, 3),
respectively. The feature vector~f is formed as follows:

~f
T SWT

= [µ11, σ11, µ12, σ12, µ13, σ13; . . . ;
µL1, σL1, µL2, σL2, µL3, σL3]

(17)

In the case of the Gabor Wavelet Transform, the values
of |Wmn(x, y)| denote the energy distribution of the trans-
form coefficients after convolving an image I with the Ga-
bor Waveletψm,n. Considering a total number of S=6 scales
and K=16 orientations, the resulting feature vector is com-
puted as follows:

~f
GW

= [µ11, σ11;µ12, σ12; . . . µ6 16, σ6 16] (18)

8. Preliminary Results and Conclusions

Preliminary results of our work include a comparative
study of different textural image descriptors used for fin-
gerprint indexing and retrieval. The main objective of our
experiments was to study the possibility of reducing the fin-
gerprint retrieval speed by reducing image search spaces us-
ing the fingerprints textural information. For that purposes,
we have explored different combinations of multiresolution
and texture-based feature extraction algorithms with simi-
larity measures.

The multiresolution-based feature extraction algo-
rithms also include: Steerable Pyramid and six differ-
ent types of the Wavelet Transform: Gabor Wavelets
and Tree-Structured Wavelet Transforms using Haar,
Daubechies (Daub 4-Tap, Daub 8-Tap and Daub16-Tap),
as well as, the Spline Wavelets. The translation- and
rotation-invariant representation of the Steerable Pyra-
mid is an important issue for the fingerprint domain,
whereas, the different spatial/frequency subimages inte-
grated naturally by the Wavelet Tranform has demonstrated
good performance for texture analysis [15].

For computing the distance among the generated fea-
ture vectors, we have studied different similarity measures
which include: Bray-Curtis, Canberra, Euclidian, Manhat-
tan, Square Chord and Square Chi-Squared distance.

Our study was conducted on each of the four databases
presented in the FVC 2000 Database [16]. The retrieval ef-
fectiveness of our approach was measured in terms of the
precision and recall curves [8]. Considering the query im-
ageq and the number of correct, missed and false candi-
dates (nc, nm andnf , respectively ), the precisionpq in the
firstR retrieved images is defined as follows:

pq =
nc

nc + nf

=
nc

R
(19)

while the recallrq of the such similar candidatesS of the
query imageq is defined as:



rq =
nc

nc + nm

=
nc

S
(20)

Our system was tested independently in each of the four
databases and each of the fingerprint images was consid-
ered as a query image, thus, a total number of 880 finger-
print queries were performed. For each query, the precision
and recall curves were computed for the 8-Nearest Neigh-
bors. Figures 3, 4, 5, and 6 show the best retrieval ac-
curacy combination between multiresolution feature extrac-
tion methods and similarity measures for each of the four
databases.
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Figure 3. Average Precision vs. Recall curves
of the best image descriptors for the DB1.

9. Conclusions

In this work we presented a novel approach for finger-
print indexing and retrieval by using different multiresolu-
tion techniques and similarity measures. The retrieval accu-
racy was measured in terms of precision and recall curves.
Preliminary results show that the best retrieval accuracy was
achieved by the Gabor Wavelet Transform combined with
the Square Chord similarity measure.
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