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Abstract. This paper presents a novel approach to classify agricultural crops using NDVI time series.
The novelty lies in i) extracting a set of features from the each and every NDVI curve, and ii) using them
to train a crop classification model using a Support Vector Machine (SVM). Specifically, we use the
TIMESAT program package to: 1) smooth the time series, 2) decompose them into agricultural seasons
–a season is the period between sowing and harvesting–, and 3) extract the features for each season. The
11 crop features we extract include the start and end of season, its amplitude, and the curve gradients of
the sprouting and senescence periods, among others. Once we have the collection of features, they are
fed into an SVM system –we use the LIBSVM library–, together with a collection of annotations about
the land use of the corresponding time series. These annotations represent the type of crop for a given
location and agricultural season, and they are provided by the specialists of the Embrapa. As a result
we obtain a classification model that allows for identifying different crop classes. Our methodology
is generic and can be applied to a variety of regions and crop types. We have develop a system called
SIRCUB (Sistema de Reconhecimento de Culturas brasileiro), which implements such methodology.
Thus, we describe in this paper the architecture of the system and the crop model learning methodology.
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1. Introduction
Crop monitoring in Brazil is a strategic question, since agribusiness represents

approximately 25% of the Brazilian Gross Domestic Product (GDP). Timely information about
cropping areas is important for the Government and producers, manly to support agricultural
production forecasting systems. Such kind of crop identification and mapping is not an easy
issue, due to the continental extension of the country, climate variations, different agricultural
intensification processes, etc. In this sense, remote sensing and geoprocessing techniques have
been extensively used to develop objective methodologies for crop mapping and monitoring on
a regional and national basis.

In the last years, the analysis of time series of vegetation index images has been appointed
by many research groups as the most appropriated to monitor and identify crops (JöNSSON;
EKLUNDH, 2002; JAKUBAUSKAS; LEGATES; KASTENS, 2002; LU; WENG, 2007; WARDLOW;
EGBERT; KASTENS, 2007; BROWN et al., 2013). These approaches explore the high spectral
and temporal resolutions of orbital sensors like the MODIS1, in order to evaluate the biomass

1The Moderate Resolution Imaging Spectroradiometer (MODIS) is on board the Terra and Aqua satellites.



condition of the crops throughout their phenological cycles. This temporal analysis does not
process the images within the time series independently, instead it considers the evolution of
each and every single pixel along the sequence of images, emphasizing in its spectral variation.
Thereby, it is possible to monitor the dynamics of vegetation in specific temporal scales,
including the characterization of phenological cycles, and apply this information to identify
specific crop types However, some challenges still remain in this kind of approach, such as the
spectral mixture due the low spatial resolution data, the similarity of different crop biomass
curves, regional crop management practices.

This paper is organized as follows: Section 2 gives a background describing two tools –
TIMESAT and LIBSVM– used in our system. Section 3 provides an overview of the related
work. Next, Section 4 describes our classification technique and the architecture of our system.
Finally, Section 5 concludes and discusses future work.

2. Background
Our approach for crop recognition relies on two tools: TIMESATand LIBSVM. The first

is used to smooth the time series and extract the crop features from the series. Afterward,
LIBSVMis used to create a classification model from features produced by TIMESAT.

2.1. TIMESAT
TIMESAT is a program package developed by Eklundh and Jönsson (JöNSSON; EKLUNDH,

2002, 2004) to process and analyze vegetation index time series, such as NDVI series.
In practice, given a time series ts it realizes the following tasks:

1. Seeks the smooth function f s that best fits ts;
2. Decomposes the smoothened series f s into agricultural seasons2;
3. Extracts, for each season, a set of crop features (amount of eleven features) called

seasonality parameters.
TIMESAT provides three different smoothing filters, of which the Savitzky-Golay filter is

the most reliable since it is more sensitive to rapid changes and noise (TAN et al., 2011). In this
software, the users may parameterize the time series processing with many distinct variables.

The eleven seasonality parameters (EKLUNDH; JöNSSON, 2011) extracted from each
agricultural season are detailed next:

1. Start of season (beg): time in which the left edge of a fitted curve has increased to a user
defined level (e.g., 10% of the amplitude) measured from the left minimum level (a in
Fig. 1).

2. End of season (end): time in which the right edge has decreased to a user defined level
measured from the right minimum level (b in Fig. 1).

3. Length of season (length): period from the start to the end of the season (g).
4. Base value (base): the average of the left and right minimum values.
5. Position of middle of season (mid_x): computed as the mean value of the times for

which, respectively, the left edge has increased to the 80% level (c in Fig. 1) and the right
edge has decreased to the 80% level (d).

6. Maximum of fitted data (max): may occur at a different time compared with 5 (e).
7. Amplitude (amp): difference between the maximum value max and the base level base

(f ).
8. Left derivative (l_der): calculated as the ratio of the difference between the left 20% and

80% levels and the corresponding time difference.

2An agricultural season corresponds to the period spanning a cycle of planting/harvesting of the crop.



9. Right derivative (r_der): calculated as the absolute value of the ratio of the difference
between the right 20% and 80% levels and the corresponding time difference. It is thus
given as a positive quantity.

10. Large integral (l_integ): integral of the function describing the season from the season
start to the season end (i).

11. Small integral (s_integ): integral of the difference between the function describing the
season and the base level from season start to season end (h).

Figure 1: NDVI time series, fitted model function using a double logistic function (thick line)
and seasonality parameters (a-i), extracted from (EKLUNDH; JöNSSON, 2011).

2.2. LIBSVM – Support Vector Machines
Support Vector Machine (SVM), proposed by Vapnik (BOSER; GUYON; VAPNIK, 1992),

is one of the most popular machine learning techniques for classification in the literature.
Initially, SVM was defined as a two-class classifier (a binary problem), but many subsequent
works extended SVM to the multi-class classification problem (CRAMMER; SINGER, 2002;
TSOCHANTARIDIS et al., 2004; JOACHIMS, 1999).

Given a linearly separable problem, the SVM technique tries to construct an optimal
hyperplane or set of hyperplanes that maximizes the margin between two classes (e.g., classes
+1 and −1). This margin can be seen as the minimum distance of one point of one class to
the other class. The instances placed on borders between the classes are called support vectors.
When it is impossible to find a linear separator for the classes, the instances are mapped to
other spaces through a non-linear mapping (kernel trick) (CRISTIANINI; SHAWE-TAYLOR, 2000),
whose hyperplanes might be able to separate both constructed classes.

The most popular implementation of the SVM technique available in the literature is the
LIBSVM library (CHANG; LIN, 2011). However, there are other implementations, such as
WEKA (HALL et al., 2009), Shogun (SONNENBURG et al., 2010), or R (IHAKA; GENTLEMAN,
1993).

3. Related Work
Land Use/Land Cover (LULC) mapping has been widely studied during last 15 years. We

can find a number of papers proposing different techniques, and with different purposes. We
have classified the related work according to two criteria: the technique used, and the nature of
their target classes. We have found 4 different types of techniques: i) time-frequency analysis



using Fourier and wavelet transforms (SAKAMOTO et al., 2005; GALFORD et al., 2008; MARTíNEZ;
GILABERT, 2009), ii) harmonic analysis of time series (ZHANG et al., 2008; JAKUBAUSKAS;
LEGATES; KASTENS, 2002; MINGWEI et al., 2008), iii) decision tree classifiers (WARDLOW;
EGBERT, 2008; ZHANG et al., 2008), and iv) machine learning techniques –like SVM– (XUE;
DU; FENG, 2014; ALCANTARA et al., 2012; PUERTAS; BRENNING; MEZA, 2013; BAO; CHI;
BENEDIKTSSON, 2013).

On the other hand, if we consider the granularity of their target classes, we can classify
the papers into two types: i) those that try to identify general land cover classes, e.g., forest,
grassland, shrubland, cropland, urban, paddy field, water (ZHANG et al., 2008; PUERTAS;
BRENNING; MEZA, 2013; MARTíNEZ; GILABERT, 2009; ALCANTARA et al., 2012; XUE; DU; FENG,
2014; BAO; CHI; BENEDIKTSSON, 2013); and ii) those that deal with specific crop types, e.g.,
alfalfa, corn, sorghum, cotton, soybean, bean (WARDLOW; EGBERT; KASTENS, 2007; WARDLOW;
EGBERT, 2008; JAKUBAUSKAS; LEGATES; KASTENS, 2002; MINGWEI et al., 2008). We summarize
in Table 1 this twofold classification of the related work. For each paper, we provide the authors,
year, and the location of the data they experimented with.

Technique
Fourier/wavelet
transforms

Harmonic analysis Decision tree Machine learning

Ta
rg

et
cl

as
se

s Land cover Martínez e Gilabert
(2009), Spain

Zhang et al. (2008),
China

Zhang et al. (2008),
China

Puertas, Brenning
e Meza (2013),
Chile; Alcantara et
al. (2012), Europe;
Xue, Du e Feng
(2014), China; Bao,
Chi e Benediktsson
(2013), Botswana

Crop types Sakamoto et al.
(2005); Japan;
Galford et al.
(2008), Brazil

Jakubauskas,
Legates e Kastens
(2002), Kansas;
Mingwei et al.
(2008), China

Wardlow, Egbert
e Kastens (2007),
Wardlow e Egbert
(2008), Kansas

Table 1: Related work classification.

4. Our Approach: the SIRCUB System
SIRCUB stands for Sistema de Reconhecimento de Culturas brasileiro (i.e., Brazilian

Agricultural Crop Recognition System), and it is a system we have developed at the Institute
of Computing of the University of Campinas. SIRCUB allows for classifying different types
of agricultural crops using NDVI time series, and it relies on SVM (Support Vector Machine).
The methodology SIRCUB implements is generic and can be applied to a variety of regions and
crops. We have developed a prototype of SIRCUB that implements almost all functionalities of
the system.

4.1. System Architecture
Figure 2 depicts SIRCUB’s architecture and data flow. The system can be divided into two

phases: feature extraction and crop model learning.
The feature extraction phase is composed of the following modules: time series

preprocessing, smooth function finder and feature extractor. In this phase, we have as input
a collection of NDVI time series and a settings file. The Time series preprocessing module is
in charge of removing signal noise –mainly cloud noise– from the NDVI time series. Next, the



filtered time series and the settings file are fed into the TIMESAT modules. TIMESAT subsystem
is responsible for smoothing the NDVI time series, decomposing them into agricultural seasons,
and extracting the crop features from each season. The user can configure the time series
processing through TIMESAT’s settings file. Some of the parameters the user can define include:
the smoothing filter, the seasonal parameter, the number of envelope iterations, or the window
size of the Savitzky-Golay filter. At the end of this phase we obtain a collection of crop
descriptors.

Figure 2: SIRCUB architecture and dataflow.

In the second phase, crop model learning, we can find the dataset generator and different
modules of the LIBSVM package: scaling, grid search, training, and testing. The Dataset
Generator is an important module, it is in charge of creating the instance datasets that feed
the learning machine. Namely, it creates pairs of training and testing sets. It has as input the
crop descriptors produced by the previous phase, and the time series annotations provided by
the specialists. The user can define several parameters concerning the dataset generation. For
instance, he/she can define the method used to generate the datasets (random resampling or n-
fold cross-validation), or whether he/she wants balanced or unbalanced datasets. Once we have
the pairs of training and testing sets, we execute the different SVM routines in order to create
the agricultural crop models, and finally we test their accuracy.

4.2. Methodology
Our methodology can be described as follows:

1. Given a collection of NDVI time series TS, for each time series ts ∈ TS we look for the
smooth function f s that best fits ts.

2. We decompose the smoothened time series f s into agricultural seasons S, and for each
season s ∈ S we extract a set of 11 features that define the crop descriptor d for that
season. These features include the beginning and end dates of the season, the curve
gradients of the sprouting and senescence periods, the total area within the curve function,
etc. (see the complete list in Section 2.1).



3. We learn the patterns of the crop curves using LIBSVM. The crop descriptors D = {d}
we found in previous step, and the annotations of land use A are then fed into the SVM.
These annotations are the ground truth data provided by specialists from the Embrapa,
who did an in the field gathering.

4. Finally, we obtain an agricultural crop model m that allows for classifying different types
of crops.

5. Conclusion
This paper presents a new approach to deal with agricultural crop classification, as well as

the architecture of SIRCUB, a system implementing the aforesaid approach. Our method is
founded on: i) the use of a set of features to describe the crops on the NDVI time series, and ii)
using such features to train a classification model for agricultural crops. The crop features are
extracted using TIMESAT software, and they include the start and end of season, the sprouting
and senescence gradients, the amplitude, etc. Furthermore, the crop models are created through
use of a SVM technique, in particular we have used LIBSVM library. Our methodology is
generic and can be applied to different regions and different types of crops.

At present, we are designing the scenarios to experimentally evaluate the effectiveness of
our approach. Embrapa has provided a collection of more than 3000 annotated time series,
which correspond to different farms located in the State of Mato Grosso, and span a period of 4
years (from 2009 to 2013). Each time series has two annotations per year, which were directly
requested to the farmers. Thus, we have 8 annotations per time series, totalizing about 25,000
annotations.

In the future, we plan to extend our methodology by combining other methods. Some of
the methods we will consider include prediction techniques like Conditional Random Fields
(CRF) or hidden Markov models. Yet another enhancement might be complementary to the
crop features, for example, use of data history of the land use during the learning process.
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