
Felipe Henriques da Silva

“Serial Annotator: Managing annotations of time
series.”

“Serial Annotator: Gerenciando anotações em
séries temporais.”

CAMPINAS
2013

i

ii

University of Campinas
Institute of Computing

Universidade Estadual de Campinas
Instituto de Computação

Felipe Henriques da Silva

“Serial Annotator: Managing annotations of time
series.”

Supervisor:
Orientador(a):

Prof.a Dr.a Claudia Maria Bauzer Medeiros

“Serial Annotator: Gerenciando anotações em
séries temporais.”

MSc Dissertation presented to the Post
Graduate Program of the Institute of Com-
puting of the University of Campinas to
obtain a Mestre degree in Computer Sci-
ence.

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Ciência da Com-
putação do Instituto de Computação da Univer-
sidade Estadual de Campinas para obtenção do
título de Mestre em Ciência da Computação.

This volume corresponds to the fi-
nal version of the Dissertation de-
fended by Felipe Henriques da Silva,
under the supervision of Prof.a Dr.a

Claudia Maria Bauzer Medeiros.

Este exemplar corresponde à versão fi-
nal da Dissertação defendida por Fe-
lipe Henriques da Silva, sob orientação
de Prof.a Dr.a Claudia Maria Bauzer
Medeiros.

Supervisor’s signature / Assinatura do Orientador(a)

CAMPINAS
2013

iii

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Silva, Felipe Henriques da, 1978-
 Si38s SilSerial Annotator : gerenciando anotações em séries temporais / Felipe

Henriques da Silva. – Campinas, SP : [s.n.], 2013.

 SilOrientador: Claudia Maria Bauzer Medeiros.
 SilDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sil1. Banco de dados. 2. Análise de séries temporais. I. Medeiros, Claudia Maria

Bauzer,1954-. II. Universidade Estadual de Campinas. Instituto de Computação.
III. Título.

Informações para Biblioteca Digital

Título em inglês: Serial Annotator : managing annotations of time series
Palavras-chave em inglês:
Databases
Time-series analysis
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Claudia Maria Bauzer Medeiros [Orientador]
Renato Fileto
Luiz Fernando Bittencourt
Data de defesa: 10-06-2013
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

http://www.tcpdf.org

Institute of Computing /Instituto de Computação
University of Campinas /Universidade Estadual de Campinas

Serial Annotator: Managing annotations of time
series.

Felipe Henriques da Silva

June 10, 2013

Examiner Board/Banca Examinadora:

• Prof.a Dr.a Claudia Maria Bauzer Medeiros (Supervisor/Orientadora)

• Prof. Dr. Luiz Fernando Bittencourt
Institute of Computing - UNICAMP

• Prof. Dr. Renato Fileto
Department of Informatics and Statistics - UFSC

• Prof.a Dr.a Maria Cecilia Calani Baranauskas
Institute of Computing - UNICAMP (Substitute/Suplente)

• Dr.a Carla Geovana do Nascimento Macario
CNPTIA - EMBRAPA (Substitute/Suplente)

vii

Abstract

Time series are sequences of values measured at successive time instants. They are used
in several domains such as agriculture, medicine and economics. The analysis of these
series is of utmost importance, providing experts the ability to identify trends and forecast
possible scenarios. In order to facilitate their analyses, experts often associate annotations
with time series. Such annotations can also be used to correlate distinct series, or look for
specific series in a database. There are many challenges involved in managing annotations
- from finding proper structures to associate them with series, to organizing and retrieving
series based on annotations. This work contributes to the work in management of time
series. Its main contributions are the design and development of a framework for the
management of multiple annotations associated with one or multiple time series in a
database. The framework also provides means for annotation versioning, so that previous
states of an annotation are never lost. Serial Annotator is an application implemented for
the Android smart phone platform. It has been used to validate the proposed framework
and has been tested with real data involving agriculture problems.

ix

Resumo

Séries temporais são sequências de valores medidos em sucessivos instantes de tempo. Elas
são usadas em diversos domínios, tais como agricultura, medicina e economia. A análise
dessas séries é de extrema importância, fornecendo a especialistas a capacidade de iden-
tificar tendências e prever possíveis cenários. A fim de facilitar sua análise, especialistas
frequentemente associam anotações com séries temporais. Tais anotações também podem
ser usadas para correlacionar séries distintas, ou para procurar por séries específicas num
banco de dados. Existem muitos desafios envolvidos no gerenciamento destas anotações
- desde encontrar estruturas adequadas para associá-las com as séries, até organizar e
recuperar séries através das anotações associadas a estas. Este trabalho contribui para
o trabalho em gerenciamento de séries temporais. Suas principais contribuições são o
projeto e desenvolvimento de um arcabouço para o gerenciamento de múltiplas anotações
associadas com uma ou mais séries em um banco de dados. Este arcabouço também
fornece meios para o controle de versão das anotações, de modo que os estados anteriores
de uma anotação nunca sejam perdidos. Serial Annotator é uma aplicação desenvolvida
para a plataforma Android. Ela foi usada para validar o arcabouço proposto e foi testada
com dados reais envolvendo problemas do domínio agrícola.

xi

Acknowledgements

I would like to thank many people who have helped me through the completion of this
dissertation. Foremost, I would like to express my sincere gratitude to my supervisor,
Professor Claudia Medeiros, for all her support and advices and for inspiring the scientific
researcher in me! Thank you for all the time and patience dispensed to me during the
development of this work. I also wish to thank Professor André Santanchè and the mem-
bers of the Laboratory of Information Systems (LIS) for all helpful advices that guided
my research. The weekly meetings and presentations held by LIS provided important
insights to this work and I only regret not having been able to work closer to you guys.
A very special thanks goes to the researchers from EMBRAPA, in special Alexandre C.
Coutinho and Júlio César D. M. Esquerdo for all the support and for providing essential
data for validation of this work. I would also like to thank the examining committee for
their many suggestions to improve this text.

Finally, I would like to thank the people who give meaning to my life. To my wife Maria
Carolina, thank you for your companionship and love. I would not have accomplished
this work without you. To my daughter Alice, who was born during the development of
this work, thank you for teaching me what unconditional love really means. To my father
and mother in law, Sidnei and Regina, thank you for supporting me, Carolina and Alice
during the long days and nights we spent in your home while I was researching for this
work.

This work was developed within the NavScales project (FAPESP-Microsoft Research
Virtual Institute) and the MAPAGRI project (Embrapa-SEG 02.11.01.004.00). It was
also partially financed by the MuZOO (CNPq) project, and by CNPq and CAPES.

xiii

Contents

Abstract ix

Resumo xi

Acknowledgements xiii

1 Introduction and Motivation 1

2 Basic Concepts and Related work 5
2.1 Time Series . 5
2.2 Annotations . 6
2.3 Annotations in relational databases . 8
2.4 Temporal databases and database versioning 11
2.5 Conclusions . 12

3 Framework for managing annotations of time series 13
3.1 Annotation storage . 13
3.2 Database model . 17
3.3 Architecture . 20
3.4 Query possibilities . 24
3.5 Conclusions . 28

4 Serial Annotator: Implementation aspects 29
4.1 Technologies used and database implementation details 29

4.1.1 Android framework . 29
4.1.2 Database implementation details 31

4.2 Presenting Serial Annotator . 31
4.2.1 Inserting a time series . 31
4.2.2 View time series annotations . 33
4.2.3 View annotation history . 35

xv

4.2.4 Editing an annotation . 36
4.2.5 Associating a new annotation with a time series 37
4.2.6 Querying annotations . 39

4.3 Tests and validation . 39
4.4 Conclusions . 42

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future work . 44

Bibliography 46

xvii

List of Tables

2.1 Comparison among annotation storage schemas 10

3.1 Time Series storage example . 15
3.2 Annotation associated with multiple time series storage example 16
3.3 Annotation versioning example . 20

xix

List of Figures

1.1 Time series examples . 1
1.2 Annotated electrocardiogram example - reproduced from [24] 2
1.3 Annotated time series - agriculture domain 3

2.1 Annotating an image - reproduced from [31] 7
2.2 Annotations with multiple granularities - reproduced from [9] 8
2.3 Annotation table - reproduced from [9] . 9
2.4 Annotation correlation . 10

3.1 Time series annotations . 14
3.2 Annotations associated with intervals . 14
3.3 Annotating multiple time series with the same annotation 15
3.4 Two annotations with the same content . 16
3.5 Different annotations in the same interval 17
3.6 Database conceptual model . 18
3.7 Framework architecture . 21
3.8 Query result - annotation content . 25
3.9 Query result - annotation content (annotation intervals only) 26
3.10 Query result - annotation content set . 27

4.1 Android architecture, reproduced from [12] 30
4.2 Database model (implementation) . 31
4.3 CSV file example . 32
4.4 Inserting a time series . 33
4.5 View time series annotations . 34
4.6 View annotations associated with multiple time series 35
4.7 View annotation history . 36
4.8 Edit annotation . 37
4.9 Associate annotation with a time series . 38
4.10 Associate annotation with multiple series 38
4.11 Query annotations . 39

xxi

4.12 Storage overhead experiment . 41
4.13 Query performance experiment . 42

xxiii

Chapter 1

Introduction and Motivation

Time series are sequences of observations of an object along time. Such series are used in
various domains of knowledge. They can be used to represent, for instance, the amount
of rainfall measured by a sensor, the heart rate measured on electrocardiograms, or the
value of shares in the stock exchange. The graphical representation of a time series (of
a single numeric measure) usually has the observation timestamps on the x axis and the
measured values on the y axis. Figure 1.1 provides some time series examples.

(a) Dow Jones market price - reproduced
from [23]

(b) Electrocardiogram - repro-
duced from [24]

(c) Temperature variation in Morning-
ton (Australia) - reproduced from [25]

Figure 1.1: Time series examples

1

2

Time series are often produced as continuous streams and therefore their storage in
databases presents some challenges, given the need to store large volume of data and to
handle frequent updates. Furthermore, due to their nature, queries over such databases
are not based on an exact match, but on the similarity among the series in question [11].

In the last decade, several studies have addressed time series data analysis. Examples
include work involving series mining e.g., search for similar series, search for patterns
within the series, search for subsequences. Such work often requires dimensionality re-
duction and segmentation [11]. However, as efficient as these solutions may be, they do
not completely solve the problems of analysis and interpretation of the resulting series,
which are extremely complex and specific to the domain in question. One solution to
alleviate this problem is to associate annotations with series (e.g., [20]).

Annotations are a type of metadata, or data about data. They are used to provide fur-
ther information on data that may be relevant for its analysis. Although annotations are
usually represented in textual form, they may also be represented with other media such
as audio or images. Figure 1.2 provides an example of an annotated electrocardiogram. If
annotations can be efficiently stored and associated with series, then series management
and retrieval can be improved. In the example, doctors looking for a particular heart
behavior in electrocardiograms can combine series mining with queries on annotations.

Figure 1.2: Annotated electrocardiogram example - reproduced from [24]

The same analysis difficulties can be observed in the agriculture domain, as shown in
figure 1.3. This figure shows an example of a situation, which we will subsequently use in
our case study. The y axis corresponds to the variation of NDVI (Normalized Difference
Vegetation Index) values. Roughly speaking, NDVI is a numerical value that indicates the

3

“greenness” of a region 1. The time series in the figure is annotated with many kinds of
information. Note that without the annotations it would be very difficult for a non-expert
to acquire useful information from this time series.

Figure 1.3: Annotated time series - agriculture domain

Up to now, related work has not dealt directly with the management of annotations
associated with time series, although several papers deal with the storage of annotations
in a relational database (e.g., [9, 2]). Furthermore, there is also related work dealing
with annotation processing, based on the concept of one annotation per time series [20].
This dissertation investigates issues related with annotations and their management. As a
result, a database-centered framework that supports creation and management of annota-
tions for use on multiple series (for both static series and streams) has been designed and
implemented. This dissertation deals with textual annotations only, which still represent
the great majority of annotations of time series.

The series analyzed and used on the validation of this work originate from the agricul-
tural domain and were provided by experts from EMBRAPA2. Agriculture is of extreme
importance for any country, and in Brazil it was responsible for 22% of the GNP in 2011
[13]. Time series are continuously generated by agricultural data sensors and satellites.
The proper analysis of such series and their annotations will help experts in their re-
search. Even though the main focus of this work is the agricultural domain, the proposal
is generic enough to be applied to other domains, as long as textual annotations are used.

The main contributions of this work are the following:
1For more details on NDVI, see chapter 4
2Brazilian Agricultural Research Corporation

4

1. The design and implementation of a framework to support the management of mul-
tiple annotations associated with one or more series, that allows insertion, deletion,
update and versioning of such annotations.

2. Validation of this framework via a smart phone application, tested with real data
and annotations. This application deals seamlessly with both historical and stream
data, which can be directly input via, e.g., wireless communication network.

The rest of this work is organized as follows: Chapter 2 presents the basic concepts and
reviews related work describing the state of the art with respect to annotation manage-
ment in relational databases. Chapter 3 presents the proposed framework, highlighting the
database model and algorithms. Chapter 4 describes implementation aspects, presents the
smart phone application and discusses the framework validation using real data. Chapter
5 presents conclusions and future work possibilities.

Chapter 2

Basic Concepts and Related work

This work focuses on the management of annotations associated with time series stored in
a database. Section 2.1 gives an overview of some research lines dealing with time series.
Section 2.2 broadens the concept of an annotation and reviews related work. Section 2.3
gives an overview of work related to annotations stored in a relational database. At last,
section 2.4 gives a brief overview of temporal databases.

2.1 Time Series
A time series can be formally defined as a sequence of tuples < vi, ti >, where vi is
the value of some variable measured at timestamp ti. This definition can be extended
to arbitrary objects, forming tuples < Si, ti >, where Si is the state of the object at
timestamp ti.

The usage of temporal data, and in particular, time series, has increased over time,
leading to several kinds of research in the field of time series data analysis. However, be-
cause of their numerical and continuous nature, time series analysis and query processing
over these series are complex subjects. In [17, 18], Lin et al. describe areas in which time
series research has concentrated:

• Indexing: Design index structures to speed up similarity search.

• Grouping: Find natural groups within the time series in a database, given some
similarity measure.

• Classification: Given a time series Q, classify it according to predefined classes.

• Summarization: Given a time series Q, create a description (textual or graphical)
that retains all its characteristics but is concise enough to fit in a single presentation
screen or page.

5

2.2. Annotations 6

• Anomaly detection: Given a time series Q, and a model of what should be a “nor-
mal” behavior, find sections of Q that contain anomalies (also called surprising,
interesting, or unexpected patterns).

Note that these topics are concerned with time series data mining, in which the ma-
jority of research concentrates on pattern searching [17, 21, 22, 7]. A detailed survey on
time series data mining can also be found in [11].

As will be seen, this dissertation is not concerned with research in time series them-
selves. Rather, its focus is on the management of annotations of series, to enhance their
interpretation, comparison and retrieval. Thus, this section aims at giving only a brief
overview on the concept of time series and on research in this area.

2.2 Annotations
To annotate means to attach data to some other piece of data [27] - similar to metadata.
Annotations describe a resource (digital or not) considering its characteristics. An an-
notation has many purposes. It may be used to explain something, provide additional
information, or improve information retrieval. Annotations are also often used to describe
characteristics that are hard to be observed using the media format of the annotated ob-
ject. An address or the name of a building, for instance, cannot be derived from a picture
of the building. Another frequent use for annotations is to help information exchange
among experts, or to attach semantics to objects. To accommodate all these different
purposes, several formats of annotations have been proposed in the literature. Annota-
tions may be, for instance, in form of text, voice comments, videos or images. Figure 2.1
shows a tool used to associate drawing annotations with the image of a vehicle. A survey
and comparison on this and several other tools used to annotate different media formats
can be found in [31]. This dissertation concentrates on textual annotations.

A more formal definition for an annotation has been proposed by Euzenat in [10],
where an annotation can be viewed as a function that relates a document to its formal
representation, enabling the interpretation of document content. Using such an annota-
tion schema, it would be possible to reconstruct the annotated content, assuming that
background knowledge is available and a formal terminology (e.g., ontology) is used on
the annotations.

Besides specifying this formal annotation concept, Euzenat [10] also indicates that
without clear guidelines, annotations risk producing incoherent information. In order
to avoid this problem, the author recommends answering a set of questions before the
annotation process begins, so that the expert can create annotations in close relation to
their use.

2.2. Annotations 7

(a) Drawing with a pen (b) Visualizing the annotation

Figure 2.1: Annotating an image - reproduced from [31]

The usage of formal annotations is necessary for the concept of Semantic Web intro-
duced by Berners-Lee in [3]. Here, annotations must be interpreted not by humans, but by
machines, which must be capable to analyze the annotations and infer useful information.
To achieve this, annotations must use controlled vocabularies or metadata fields from on-
tologies [36]. These so-called semantic annotations (as opposed to free text annotations)
allow for greater interoperability, since they may be interpreted by any computational
system that known the controlled vocabulary.

In order to associate an annotation with Web content, there are several free-text
annotation systems that may be used. Some of these systems use schemas based on the
Annotea annotation schema [33, 15]. Annotea is a Web-based shared annotation system
based on a general-purpose open Resource Description Framework (RDF) infrastructure.
RDF is a W3C standard language for representing information about resources in the
Web [29]. Annotea allows only simple free-text annotations.

An annotation can be created manually [16], semi-automatically [14], or automatically
[8]. Another way to create annotations is through “crowdsourcing”, that is, creating anno-
tations based on contributions from a large group of people or from an online community.
In [35] Wu et al. show that a global semantic model can be statistically inferred from
informal annotations collected from web blogs and social bookmarks (called social anno-
tations). These informal annotations can be any strings that the user deems appropriate
for the web resource. The term folksonomy is coined to refer to these informal social
tags and categories in social bookmarks. The authors also show that the semantics that
emerge from folksonomies can then be used to search for semantically-related content,
even if the content is not tagged by the query tags and does not contain any of the query
keywords.

Another problem faced by annotation systems is the propagation of annotations dur-
ing data processing. That is, if a system has an input data set I, where some items

2.3. Annotations in relational databases 8

have associated annotations, it is not straightforward to determine how these annotations
should be propagated to the output set O. A solution to this problem was proposed by
Amiguet-Vercher et al. [1], where the proper mapping from input to output annotations
is described as a clustering problem.

As already mentioned, in this work, annotations are considered to be a textual rep-
resentation of the annotated content. They may provide further information, clarify the
object being annotated or provide some kind of communication among experts analyzing
the same object.

This section covered the importance of the annotation process and the variety of
possibilities for annotating content. The next section will cover work related to textual
annotations associated with entries in relational databases.

2.3 Annotations in relational databases
In the context of relational databases, annotation is an information linked to data items
inside the database. Data can be annotated at multiple granularities, e.g., annotating
an entire table, an entire column, a subset of the tuples, a few cells, or a combination of
these. Figure 2.2 shows annotations with such multiple granularities. In this figure, for
instance, annotation A1 is associated with all cells in the entire first row while annotation
A4 is associated with all cells in the last two columns.

Figure 2.2: Annotations with multiple granularities - reproduced from [9]

Storing annotations in relational databases presents some architectural questions. The
main ones are: where should the annotation be stored and how should it be linked to the
annotated data.

Despite their importance, annotations are not supported by most database systems.
In [4], Bhagwat et al. present an early study addressing annotation management, where
a very simple schema was developed. In this schema, annotations are stored together

2.3. Annotations in relational databases 9

with the annotated data irrespective of the annotation granularity. This raises storage
problems, as a single annotation must be replicated through all annotated space. If, for
instance, an annotation is associated with all cells in a column, as many annotations as
the number of lines in the annotated column will be created. Although very simple, this
schema presents a first evolution on annotation storage and has been used as a benchmark
for further annotation management schemas. It is also important to note that this naive
storage schema facilitates annotation propagation through database operations.

A more sophisticated annotation management schema can be found in [9], where the
problem of multiple granularity levels is better addressed. The authors propose that each
annotation should be linked to the annotated cells through a mapped space. Annotations
are also stored on separate tables called annotation tables that have a predefined structure.
Figure 2.3 provides an example of an annotation table.

Figure 2.3: Annotation table - reproduced from [9]

Note that annotation A1 is associated with all cells in the first row, that is, the
annotation extends from the first column in the first row (1,1) to the sixth column in the
first row (6,1). In the same way, annotation A4 is associated with all cells in the last two
columns, that is, the annotation extends from the fifth column in the first row (5,1) to
the sixth column in the fourth row (6,4).

Another work dealing with annotations in relational databases is that of Aoto et
al. [2], in which the main focus is the propagation of the annotation when a database
operation is performed. In order to correctly propagate annotations, the authors propose
that instead of associating an annotation directly with the annotated data, annotations
should be associated dynamically, by means of data correlations. Correlations are then
recomputed after database operations are performed, applying the annotation on the new
data. An example of such an annotation schema can be observed in figure 2.4, where the
annotation “Discomfort” is associated with relations where the attribute Temperature has
values larger then 30 or smaller then 15.

2.3. Annotations in relational databases 10

Figure 2.4: Annotation correlation

Table 2.1 presents a comparison among the previously presented papers, highlighting
their characteristics. As will be seen, the framework proposed here to manage annotations
associated with time series in a database is derived from combining features from these
three papers.

Work Proposal Storage Versions
Multiple
Annota-

tions

Granu-
larity

Provenance
Information

Bhagwat
et al. [4]

Stores
annotations
together with
annotated

data

With Data No No No No

Eltabakh
et al. [9]

Manages
multiple

granularities
in

annotations
by mapping
annotated

space

Separate No Yes Yes No

Aoto et
al. [2]

Specifies
correlations in

order to
propagate
annotations

Separate No
Depends
on the

correlation
Yes No

Table 2.1: Comparison among annotation storage schemas

Annotation storage has also a close relationship to data provenance storage. Prove-
nance information describes the origins and the history of data in its life cycle [6]. Since
there is no standard to store data on provenance, it can be stored in the form of annota-
tions. However, work dealing with data provenance is focused in the “why”, “where” and

2.4. Temporal databases and database versioning 11

“how” of every update of data [6, 5], which creates complex structures for provenance and
makes it unsuitable for storage as textual annotations. Provenance data can also be used
to enhance security in a system [28]. It would be possible, for instance, for a system to
have a policy where only the author of an annotation can update it, or where the author
cannot review his/her own annotations. In this work, data provenance can be related
either to time series or to annotations. For time series, provenance is considered to be
the information related to the originator of the series, that is, which sensor, satellite or
entity created the series. For annotations, only the author name and annotation modi-
fication storage time (transaction time) are considered as provenance of the annotation
themselves.

Annotations can be stored in many kinds of formats and systems besides relational
databases. XML files, for instance, can store set-valued attributes and could be more
suitable for annotation storage. XML has also the advantage of being more computer-
processable, allowing for interoperability. RDF triples offer also another means to store
annotations (e.g., [31]). However, there is an associated complexity to convert from/to
XML/RDF file structures while performing database operations. For simplicity reasons,
this work deals only with annotations stored in relational databases.

2.4 Temporal databases and database versioning
In a collaborative system, it is common for experts to modify annotations created by other
experts. This means that the annotation content changes over time. Such modifications
are usually performed due to errors on previous annotations or to changes in the under-
standing of the observed phenomenon. Usually, however, it is important for experts to
analyze previous contents of an annotation as they may provide insights on the observed
phenomenon along time. Thus, it is important to preserve old annotation contents in the
database. As will be seen, this work preserves annotation history taking advantage of
research in temporal databases.

The work of Snodgrass [30] presents an overview of the main concepts of temporal
databases. Snodgrass defines four database types depending on the given temporal entries,
which are: valid time (the time range when an entry is valid) and transaction time (the
time when the information was stored):

1. Snapshot database: No temporal information stored.

2. Rollback database: All past states of the database are stored and indexed by the
transaction time. Queries can be performed on any previous state of the database.

2.5. Conclusions 12

3. Historical database: Uses valid time, recording a single historical state per re-
lation. While rollback databases can roll back to a previous snapshot relation,
historical databases can represent current knowledge about the past [30].

4. Temporal database1: Combination of the previous two approaches, using both
valid time and transaction time.

In the proposed framework, when an annotation is stored, the transaction time is
stored with it. This leads to a rollback database approach, since it is possible to perform
queries over previous annotations’ states. However, annotations are seen as static labels,
created by experts usually (in our case study) while they are working at external locations.
While these annotations may be changed by other experts later on, this is not the best
approach if experts want to collaborate over annotations. Managing this collaboration
may be a complex task when multiple annotators and multiple sites are involved. To
alleviate this problem, collaborative annotation frameworks have been proposed (e.g.,
[34, 19]). Such frameworks allow discussions among experts before the annotation is
stored. Future extensions of this work shall consider using ideas from these frameworks
to enhance collaboration among experts.

Last but not least, literature on temporal databases contemplates a third kind of
time, user-defined time, in which users define their own time units based on application
semantics - e.g., seasons of the year, specific holidays and so on. In agriculture, users can
mark events according to activities - e.g., harvest, seeding and so on. This work does not
consider these kinds of issues, although user-defined time values can also be treated as
textual annotations.

2.5 Conclusions
This chapter presented the main concepts necessary to understand the framework pro-
posed to manage annotations associated to time series. The next chapter presents the
proposed framework.

1The term Temporal database is used by Snodgrass in [30]. However, the combination
of Historical and Rollback databases is also known as Bi-temporal database.

Chapter 3

Framework for managing
annotations of time series

This chapter presents the framework proposed to manage, in a database, annotations
associated with time series. Section 3.1 describes the proposed method to associate an-
notations with time series and section 3.2 describes the data structure and database
schema. The framework architecture is presented in section 3.3. Section 3.4 shows some
query possibilities offered by the proposed framework.

3.1 Annotation storage
The proposed framework aims to solve two problems related to annotation storage:

• How to store multiple annotations associated with a time series.

• How to store annotations associated with multiple time series.

This section will go through the fundamentals behind the proposed methodology for
annotation storage.

Whenever an expert annotates a section of a time series, (s)he is in fact annotating
both an interval and a set of values the time series assumes in that interval. If the expert
associates multiple annotations with a time series as illustrated in figure 3.1, then there
is a set of annotated intervals and values. In this figure, annotation A1 is associated with
interval [t1, t2] and values [v1, v2], while annotation A2 is associated with interval [t3, t4]
and values [v3, v4].

13

3.1. Annotation storage 14

Figure 3.1: Time series annotations

Usually, the reason for annotating a given section of a series is related to the values the
series assumed on the annotated interval, e.g., unusual (value) patterns are likely to be
annotated. Note, however, that a time series is a function in time, so storing annotations
associated with both value and time would be a redundancy. Therefore, in order to
facilitate annotation storage, instead of linking the annotation to both an interval and
a set of values, the proposed suggestion is to associate an annotation directly with its
interval. In this case, all values that fall within the annotated interval are considered
associated with the annotation. Figure 3.2 is a rework of figure 3.1 illustrating this
concept.

Figure 3.2: Annotations associated with intervals

3.1. Annotation storage 15

This same concept also makes it straightforward to associate the same annotation with
multiple time series at once. However a constraint must be specified on the involved time
series: all series must have values on the annotated time interval. Figure 3.3 illustrates
this. Note that in order to associate the annotations A1 and A2 with the time series s1

and s2, both series need to exist through the annotation intervals.

Figure 3.3: Annotating multiple time series with the same annotation

In order to better understand the storage structure behind this idea, tables 3.1 and 3.2
illustrate the storage of an annotation associated with two time series. Table 3.1 shows
two stored time series with ids 1 and 2. Both series have values in the time interval 1 to
999. Table 3.2 shows a stored annotation with id 1 and content “corn” associated with
these two time series in the time interval 10 to 111.

TimeSeries
series_id timestamp value

1 1 81
...
1 999 233
2 1 68
...
2 999 55

Table 3.1: Time Series storage example

3.1. Annotation storage 16

Annotations
id annotated_series range_start range_end annotation
1 1,2 10 111 corn

Table 3.2: Annotation associated with multiple time series storage example

It is important to note that the proposed storage method does not allow gaps in the
interval with which an annotation is associated (i.e. the interval must be continuous). To
illustrate this, consider the time series in figure 3.4. Note that the same pattern appears
twice in the series and assume that an expert finds it appropriate to associate the same
annotation with both occurrences of the pattern. However, even if the content is the same,
two different annotations must be created, since they correspond to different intervals.

Figure 3.4: Two annotations with the same content

It must also be pointed out that different series can have multiple distinct annotations
for the same interval. Figure 3.5 illustrates this concept. Annotation A1 is associated
only with series s1 in the interval [t1, t4]. Annotation A2 is associated only with series s2

in the interval [t2, t3] and annotation A3 is associated with both s1 and s2 in the interval
[t5, t6].

3.2. Database model 17

Figure 3.5: Different annotations in the same interval

3.2 Database model
This section presents the database model and schema proposed for the framework. The
model is composed of three tables as depicted in figure 3.6. The Annotation table stores
all annotations. The notion of a single table to store annotations is borrowed from [9].
This table is also used to separate annotations from annotated data. Annotations are
associated with time series through the TimeSeriesMap table. This table stores the
provenance information of the stored series and also the unique id of each series in the
database. At last, the TimeSeries table stores all time series. This table is also associated
with the TimeSeriesMap table through the unique time series ids. The arrows in the figure
represent foreign key relationships.

We point out that this is a non-normalized schema. The main reason for this is to
optimize performance in the target implementation platform (see chapter 4). For other
platforms (e.g., desktop), this might not be the best database model.

3.2. Database model 18

Figure 3.6: Database conceptual model

The database schema is derived from the model as follows:

• Annotations(annotation_key:number, annotation_id:number, version:number,
annotated_series:text, range_start:number, range_end:number, author:text, store_
time:number, annotation:text)

• TimeSeriesMap(series_id:number, series_type:text, series_unit:text, series_
source: text, series_info:text)

• TimeSeries(series_id:number, timestamp:number, value:number)

There follows a detailed description of the tables and their attributes:

• TimeSeriesMap table: This table stores metadata information for every time
series in the database.

– series_id: This is the id of a time series. It is the primary key of this table
and is exported as foreign key to all other tables. Whenever a time series is
about to be stored, an entry is created in this table, assigning an id to the time
series. The series’ values can then be stored in the TimeSeries table.

– series_type: The time series type, e.g., satellite-ndvi (for series generated by
satellites measuring ndvi), sensor-temperature (for series generated by sensors
measuring temperature), and so on.

– series_unit: The unit in which the values of this time series are stored, e.g.,
for a series related to temperature it can be oC or oF.

– series_source: The source of the values for the time series. This may be a
satellite or sensor id, or even a person name. In other words, this attribute
provides provenance information. Provenance data is essential for time series,
since data is constantly being created with no centralized control over its in-
tegrity. Because time series sources may vary in terms of quality, it is important

3.2. Database model 19

to provide provenance together with other context information which can help
experts judge whether results are trustworthy.

– series_info: Further information that can be associated with a time series.

• TimeSeries table: This table stores all time series in the database.

– series_id: Foreign key from TimeSeriesMap table. It is the id of the time
series.

– timestamp: This is the timestamp of a time series value. This attribute, to-
gether with the series_id, form the primary key of this table.

– value: This is the value of the time series associated with the timestamp.

• Annotations table: This table stores all annotations associated with any time
series stored in the database.

– annotation_key: Primary key within the Annotations table.
– annotation_id: The annotation id. This uniquely identifies an annotation in

the database. This could not be the primary key, since annotations may have
multiple versions and all versions share the same annotation id.

– version: The annotation version. Each annotation starts at version 1. The ver-
sion is increased whenever a modification is done on that annotation. Deleting
the annotation changes the annotation contents to some predefined value and
also increases its version. This means that a deleted annotation can be re-
stored if an expert chooses to do so. The only way to completely remove an
annotation is to delete the series associated with it.

– annotated_series: Set of foreign keys from the TimeSeriesMap table. These
are the ids of all time series with which this annotation is associated.

– range_start: The start of the time range for which this annotation is valid.
This is a timestamp value.

– range_end: The end of the time range for which this annotation is valid. This
is a timestamp value.

– author: The author who created or modified the annotation.
– store_time: The timestamp when this version of the annotation was stored in

the database (transaction time).
– annotation: The annotation contents.

3.3. Architecture 20

Note that this database adds versioning to the annotations. After an annotation is
stored, its states are never lost. Instead, new versions are added to the database. The same
does not happen with time series. Changes to time series values are not supported once
they are stored. New values may be appended to a time series, but it is still considered the
same series and not a new version of it. This structure is related to a rollback database
model as introduced by Snodgrass in [30]. Since the transaction time of annotations
is stored, it is possible for an expert to restore (rollback) an annotation to any of its
previous states. Table 3.3 illustrates the storage of an annotation containing three versions
associated with the time series with id = 1. Note that the versioning schema allows for
collaboration between experts. In more detail, the annotation contents show that John
discusses with Bob about the actual meaning of the series for the range [2,20].

Annotations

id version annotated_
series

range_
start

range_
end author store_

time annotation

1 1 1 2 20 John 12450702 corn

1 2 1 2 20 Bob 12450864 Update,
this is rice

1 3 1 2 20 John 12451022
New analysis
shows this is
indeed corn

Table 3.3: Annotation versioning example

3.3 Architecture
The framework architecture is depicted in figure 3.7. Full arrows correspond to data flow
and dashed arrows correspond to service invocations and responses.

3.3. Architecture 21

Figure 3.7: Framework architecture

The framework is composed of 3 layers:

• Interface: Provides access to the framework services to either end users or external
services.

• Modules: Provides all services needed to process time series and annotations.

– Time series processing module: Processes and stores time series. Also
responsible for appending new data to existing time series.

– Annotation processing module: Processes and stores annotations, associ-
ating them to the given time series in the database.

– Query processing module: Handles all query requests that come through
the interface layer. Handles queries for time series, annotations, or both.

• Persistence: Receives requests from the modules layer to store or retrieve data on
the database where annotations and time series are stored.

The following use cases will provide a better understanding of the framework:

1. Storing a time series: In order to store a time series, the framework may receive as
input a file containing the entire time series or, alternatively, continuous updates of

3.3. Architecture 22

time series values to be appended to a given series. In the first case, a file containing
a time series is input through the interface layer. This file goes through the Time
Series processing module, that requests the persistence layer to create an id for
the new time series in the database. This id will then be used to store all <value,
timestamp> tuples from the time series file. In the second case, an event arrives
through the interface, containing the time series id (as stored in the database) and
a set of <value, timestamp> tuples. The Time Series processing module will then
obtain the time series id from the database and request the persistence layer to
append all <value, timestamp> tuples to it.

2. Annotating stored time series: The interface provides facilities for an expert to
annotate stored series. The expert may create, delete, and update annotations. To
create a new one, (s)he must select one or more series, indicate the time interval
to be annotated and provide the annotation content and author name. This infor-
mation is passed to the Annotation processing module that requests the persistence
layer to store the annotation associated to that time series. Annotation modification
or deletion is processed as follows: The expert requests to see one or more series
and their associated annotations. The Query processing module returns this infor-
mation and displays it to the expert. The expert selects the desired annotation and
performs the modification or deletion. The Annotation processing module receives
the information and requests the persistence layer to create a new version for that
annotation id.

3. Storing an annotated time series: In this case, the time series must be stored in
a file together with its annotations. This file goes through the Time series processing
module in the same way as in the “Storing a time series” use case. This time however,
the module will also retrieve the annotations from the file (see algorithm 1) and will
forward them to the Annotation processing module. Both modules request the
persistence layer to store the time series and associated annotations.

4. Querying for an annotation: In order to query for annotations, the interface
will provide means to search for annotation content, authors, and annotations on a
specific time series set. Section 3.4 presents further details on query possibilities.

Algorithm 1 shows the pseudo code to retrieve annotations from a file containing an
annotated time series:

3.3. Architecture 23

Algorithm 1 Annotated time series processing
Input: Let F be a file containing a time series and its annotations. Each line shall contain

a tuple in the form: <timestamp, value, annotation>, where the annotation item may
be empty.

Output: Time series are stored in the database and annotations are forwarded to the
processAnnotations algorithm (algorithm 2).

1: i← 0
2: for all line ∈ F do
3: timeSeries[i].timestamp← line.timestamp

4: timeSeries[i].value← line.value

5: annotation[i].timestamp← line.timestamp

6: annotation[i].content← line.annotation

7: i← i + 1
8: end for
9: id← storeTimeSeries(timeSeries)

10: {Call algorithm 2 passing annotation(containing a set of annotation tuples) as A and
id as S.}

After the time series <timestamp, value> tuples are retrieved from the file, a call is
made to the persistence layer to store the series (line 9 of algorithm 1). When this happens,
the persistence layer assigns an id to the time series. Once the file processing finishes
and the time series is stored, the annotations can be further processed as illustrated in
algorithm 2. Algorithm 2 does not receive the start and end of the time interval of each
annotation, therefore the role of algorithm 2 is to find the start and the end of the time
interval of the input annotations. After the annotation interval is found, a call is made
to the persistence layer to store each annotation, together with the corresponding time
interval.

3.4. Query possibilities 24

Algorithm 2 Process annotations
Input: Let A be a set of annotation tuples in the form <timestamp, content> and S the

id of the time series the annotation is associated with.
Output: The annotations are stored in the database together with the corresponding

time intervals.
1: i← 0
2: {x will store the content and interval of the annotation currently being processed

inside the loop below.}
3: x.content← NULL

4: x.intervalStart← 0
5: x.intervalEnd← 0
6: for all annotation ∈ A do
7: if x.content 6= annotation[i].content then
8: {New annotation found. Mark the end of the interval of the previous one, if any.}
9: if x.content 6= NULL then

10: x.intervalEnd← annotation[i− 1].timestamp

11: storeAnnotation(x, S)
12: end if
13: x.intervalStart← annotation[i].timestamp

14: x.content← annotation[i].content

15: end if
16: i← i + 1
17: end for

3.4 Query possibilities
This section presents examples of queries that are possible with the proposed framework.
Some of these queries have been discussed with EMBRAPA experts. The queries are
organized by input. Each input has a set of possible outputs.

1. Input: annotation content

1.1. Output: all annotations which have the given content.
1.2. Output: all series that have that annotation content among its annotations,

considering all annotation versions (i.e., past contents of annotations are also
returned).

1.3. Output: all series that have that annotation content among its current anno-
tations (i.e., considers only the current content of an annotation, ignoring its

3.4. Query possibilities 25

past contents). The series should be displayed in a way that allows experts to
compare them. Figure 3.8 shows an example of the result of this query, for
input=“corn”, and output=all series that have “corn” among their annotations.

Figure 3.8: Query result - annotation content

1.4. Output: Same as 1.3, but returning only the interval of each series that is
associated with the given annotation. Figure 3.9 shows an example of such
result. Note that each interval is set to an unique start point and the length of
the time interval in each time series may be different. In other words, the x-axis
is normalized. The goal is to show the patterns that are annotated, regardless
of the annotation period. This is an important output, and has been requested
by EMBRAPA experts.

3.4. Query possibilities 26

Figure 3.9: Query result - annotation content (annotation intervals only)

1.5. Output: the name of annotation authors that created annotations with that
content.

1.6. Output: all provenance information associated with series that have that an-
notation content among its annotations.

1.7. Output: all history (current and past contents) of annotations that have that
content as the current one.

2. Input: set of annotation contents

2.1. Output: all series that have all annotation contents in the given set among its
current annotations (i.e., considers only the current content of an annotation,
ignoring its past contents). A simple example of such a query is when a time
series is associated with one annotation in its entirety, and also with other par-
tial annotations. This annotation associated with the entire series could be,
for instance, the geographic position where the time series values have been
measured. Therefore this makes it possible to query for time series generated
at a given geographic position that are also associated with further annota-
tions. Figure 3.10 shows a result of a query for time series associated with
annotations “corn” and “-22.83125,-47.121735” (annotation containing the ge-
ographical position associated with the time series).

3.4. Query possibilities 27

Figure 3.10: Query result - annotation content set

3. Input: annotation author

3.1. Output: all annotations created by that author, considering all annotation
versions (i.e., past contents of annotations are also returned).

3.2. Output: all current annotations created by that author (i.e., considers only the
current content of an annotation, ignoring its past contents).

3.3. Output: all series that have annotations created by that author among its
annotations.

3.4. Output: all provenance information associated with series that have annota-
tions created by that author.

4. Input: time series id

4.1. Output: all annotations associated with that time series, considering all anno-
tation versions (i.e., past contents of annotations are also returned). Deleted
annotations shall also be returned (i.e., the predefined content for deleted an-
notations will be returned in this case).

4.2. Output: all current annotations associated with that time series (i.e., considers
only the current content of an annotation, ignoring its past contents). Deleted
annotations shall also be returned if the current annotation content represents
a deleted annotation.

3.5. Conclusions 28

4.3. Output: the name of all authors that have created annotations associated with
the time series.

4.4. Output: all provenance information associated with the time series.

5. Input: time series id and a time interval
Same outputs as in 4.1, 4.2 and 4.3, but returning values within the given time
interval only.

6. Input: sets of time series ids
Same outputs as in 4.1, 4.2 and 4.3, but returning only annotations associated with
each and every series in the set.

7. Input: sets of series ids and a time interval
Same outputs as in 4.1, 4.2 and 4.3, but returning only annotations associated with
each and every series in the set and within the given time interval.

8. Input: time series source name

8.1. Output: the names of all time series generated by that source (same prove-
nance).

8.2. Output: all annotation contents associated with time series generated by that
source.

It must be pointed out that, as will be seen in chapter 4, only queries 1.1, 1.3 (without
the graphical comparison), 1.7, 4.2, 4.4 and 6 (only the outputs related to 4.2) have been
implemented in this work. The remaining queries may be implemented by extensions of
this work.

3.5 Conclusions
This chapter presented the specification of the framework proposed to manage annotations
associated with time series in a database. It also presented the proposed database model
and core algorithms within the architecture. The next chapter presents implementation
aspects of this framework and discusses the framework validation using real data.

Chapter 4

Serial Annotator: Implementation
aspects

This chapter presents the implementation aspects of this dissertation. Section 4.1 presents
the technologies used and a few implementation details. Section 4.2 presents the smart
phone application. Section 4.3 presents the tests performed to validate the framework,
using data from the agricultural domain. Finally, 4.4 presents some conclusions.

4.1 Technologies used and database implementation
details

4.1.1 Android framework
The framework was implemented on a mobile device running the Android platform. Since
the main focus of this application is the agricultural domain, and in this domain there
is extensive work in external locations, having an application running on a mobile device
or a tablet facilitates the adoption of the application, allowing for better information
exchange and analysis.

The architecture of the Android platform can be visualized in figure 4.1.

29

4.1. Technologies used and database implementation details 30

Figure 4.1: Android architecture, reproduced from [12]

The Android OS can be referred to as a software stack of different layers, where each
layer is a group of several program components. Together it includes operating system,
middleware, and important applications. Each layer in the architecture provides different
services to the layer just above it. A complete explanation of all Android framework
components can be found at [12]. This section will provide some details on a few of these
components in order to provide better understanding of the implementation in section
4.2:

• Applications: This is the layer where all applications live. They communicate
with the Android framework using components of the Application Framework layer.
Considering the components of our framework depicted at figure 3.7, the interface
layer and part of the modules layer lie in the Android application layer.

• Content Providers: Content providers lie within the Application Framework.
They manage access to a structured set of data. Content providers are the stan-
dard interface that connects data in one process with code running in another pro-
cess. Considering the components depicted at figure 3.7, the persistence layer is
implemented through a content provider. This content provider will connect the
application with the underlying SQL database.

4.2. Presenting Serial Annotator 31

• SQLite: The Android framework has an embedded SQLite library. SQLite is a
software library that implements a self-contained SQL database engine [32].

4.1.2 Database implementation details
The database model was slightly modified on the implementation to increase flexibility and
for performance reasons. Instead of one table holding all time series entries as described
in section 3.2, each time series has been stored in its own table. Whenever a new time
series is inserted, a new table is created in the database and the table name is inserted in
the TimeSeriesMap table. Figure 4.2 shows this modification.

Figure 4.2: Database model (implementation)

Another performance enhancement was done in the annotated_series attribute of the
Annotations table, where the time series ids are kept sorted. That is, if an annotation is
associated with series 5, 15, and 9, the annotated_series attribute will have the content
“5,9,15”. The ids are sorted in order to optimize queries, otherwise in order to find
annotations associated to series 5, 9, and 15, six queries would need to be performed,
considering all possible id combinations: “5,9,15”, “5,15,9”, “9,5,15”, “9,15,5”, “15,5,9”
and “15,9,5”.

4.2 Presenting Serial Annotator
This section presents Serial Annotator, the application developed to validate the frame-
work. In order to provide a better understanding, it will be presented through its main
use cases.

4.2.1 Inserting a time series
This use case shows how a time series can be inserted from a file. The file must be a
comma separated value (csv) file. Each line in the file must have the format depicted in

4.2. Presenting Serial Annotator 32

figure 4.3 (lines containing other formats are ignored):

Figure 4.3: CSV file example

The first item in each line is a timestamp that must follow a predefined format (selected
by the user as can be seen in figure 4.4). The second item is the time series value at that
timestamp. The third value is an optional annotation for that timestamp.

Figure 4.4 shows the flow to be followed in order to insert a time series. Figure 4.4(a)
shows the screen that is displayed when Serial Annotator is used for the first time. To
insert a new time series the user should click on the add time series button . This will
lead to the screen in figure 4.4(b), where a csv file must be selected. The application will
then present the screen in figure 4.4(c), where the user must enter a few metadata, such
as the name, the timestamp format (that can be found in the first column of the csv file),
the series type (selected from a predefined set), the series unit and series source. After all
information is selected, if the time series is successfully stored, the time series metadata
is displayed in the list shown in figure 4.4(d).

4.2. Presenting Serial Annotator 33

(a) Start screen (b) Choosing a file (c) Entering series infor-
mation

(d) Inserted time series

Figure 4.4: Inserting a time series

It is also possible to create time series from stream data. Serial Annotator accepts
event-based data entries from available cell-phone sensors or from other applications.
As an example, since most Android phones have a GPS, the phone position could be
sent over events to the Serial Annotator application, creating a time series with the
phone position over time. On the current implementation, the streaming time series data
is received through an Android system event called Intent [12], but depending on the
sampling interval, other event capture solutions may be adopted. Since the interface used
to receive streaming data is public, independent applications may be created to send data
to Serial Annotator and published to the Android ecosystem. This allows for flexibility
and interoperability. The framework also supports associating annotations with stream
data on the fly, even though this has not been implemented.

4.2.2 View time series annotations
Figure 4.5 shows the flow to be followed in order to view an annotation associated with
a time series. At first, the time series must be selected. To select a series, the user must
click on the box icon at the left side of the list item. Figure 4.5(a) shows a selected time
series. The user must then click on the view button in order to open the time series.
This will lead the user to the screen in figure 4.5(b), where the time series is displayed
graphically. This graphical representation will contain all time series values, which may
be hard to visualize on a smart phone screen. To alleviate this problem, the graphical
representation has a zooming feature. The user can touch on the desired portion of the

4.2. Presenting Serial Annotator 34

series graphic to zoom on it. At the bottom of this screen, all annotations associated with
the series are displayed in a list. When an annotation is selected, the annotation time
interval is highlighted on the time series chart, as shown in figure 4.5(c).

(a) Select time series (b) Time series displayed (c) Annotation selected

Figure 4.5: View time series annotations

It is also possible to view annotations associated with multiple time series. To do that,
the user may simply select multiple series at once and click on the view button. Figure
4.6 shows this flow.

4.2. Presenting Serial Annotator 35

(a) Multiple series se-
lected

(b) Time series displayed (c) Annotation selected

Figure 4.6: View annotations associated with multiple time series

4.2.3 View annotation history
As already discussed in previous sections, annotations are never deleted. Therefore, it is
possible to query all previous states of an annotation, as described in item 1.7 of section
3.4. Figure 4.7 shows the flow to be followed in order to view previous states of an
annotation. The screen in figure 4.7(a) shows a selected annotation. By clicking on the
annotation information button , the list of previous states is displayed as shown in
figure 4.7(b). Note that this annotation has previously been deleted (version 3) and has
been subsequently restored (version 4). Each line in the annotation history list shows the
author of the modification and when the annotation modification was stored (transaction
time).

4.2. Presenting Serial Annotator 36

(a) Annotation selected (b) Annotation history

Figure 4.7: View annotation history

4.2.4 Editing an annotation
Figure 4.8 shows the flow to be followed in order to edit an annotation. Figure 4.8(a)
shows a time series with a selected annotation. By clicking on the edit annotation button

, the edit annotation screen is displayed, as shown in figure 4.8(b). The user must
then enter the author of the modification and the new annotation contents.

The flow to delete an annotation is very similar, and therefore not depicted here. If the
user wants to delete an annotation instead of editing it, the delete annotation button
must be clicked. However, remember that the annotation is not really deleted, instead, a
new version is created with the content “DELETED”.

4.2. Presenting Serial Annotator 37

(a) Annotation selected (b) Edit annotation

Figure 4.8: Edit annotation

4.2.5 Associating a new annotation with a time series
Figure 4.9 shows the flow to be followed in order to associate a new annotation with a time
series. Figure 4.9(a) shows the selected time series. By clicking on the annotate series
button , the screen in figure 4.9(b) will be displayed. The user must then select the
time interval to be annotated. This is done by clicking on the start and end of the interval
in the time series chart. Figure 4.9(c) shows the interval selected by the user highlighted
in the time series chart. Note that the interval start and end dates are displayed at the
bottom of the screen. By clicking on the OK button, the screen in figure 4.9(d) will be
displayed. In this screen, the user must then enter the author of the annotation and the
annotation contents.

4.2. Presenting Serial Annotator 38

(a) Series selected (b) Select annotation in-
terval

(c) Interval selected (d) Add annotation info

Figure 4.9: Associate annotation with a time series

It is also possible to associate an annotation with multiple time series. To do that,
the user may simply select multiple series at once and click on the annotate series button.
Figure 4.10 shows this flow.

(a) Multiple series se-
lected

(b) Select annotation in-
terval

(c) Interval selected

Figure 4.10: Associate annotation with multiple series

4.3. Tests and validation 39

4.2.6 Querying annotations
It is possible to query the annotations stored in the database given a query string, as
described in item 1.1 of section 3.4. Figure 4.11 shows the flow to be followed in order
to query for an annotation. Figure 4.11(a) shows the main application screen. The user
must then click on the query button , which will lead to the screen shown in figure
4.11(b). After the user enters some string on the search field and clicks on the “Go” key,
a list with all annotations that matched that string together with the annotation authors
is displayed as shown in figure 4.11(c). The user may then select one annotation from
this list and the time series with which this annotation is associated will be displayed, as
shown in figure 4.11(d).

(a) Start screen (b) Enter query string (c) Query results list (d) Annotation selected

Figure 4.11: Query annotations

4.3 Tests and validation
This section presents a validation of the proposed framework with real data, comparing
it with related work proposals described in section 2.3.

The data used for tests and validation was provided by EMBRAPA. It consists on a
set of files, each one containing a time series of Normalized Difference Vegetation Index
(NDVI) values over time extracted from a polygon in a satellite range. The NDVI is
a measurement of density of green on a patch of land. When sunlight strikes objects,
certain wavelengths of this spectrum are absorbed and other wavelengths are reflected.
The pigment in plant leaves, chlorophyll, strongly absorbs visible light and the leave cell

4.3. Tests and validation 40

structure reflects near-infrared light [26]. By analyzing the reflected sunlight in a target
area, it is possible to determine the vegetation density in that area. With the NDVI
values, experts are also capable of identifying different kinds of crops. More than 400
time series with such information were provided, consisting of data collected between
2000 and 2011. Each series contains 281 tuples. In order to evaluate the framework with
a larger series, the real series were concatenated over and over to build a test series with
120 thousand tuples.

Section 2.3 presented related work on annotations stored in relational databases. Our
work makes a similar validation as performed by [9], that is, our schema for time series
annotations was compared to the straightforward schema described in [4], where annota-
tions are stored on each cell independently. In the straightforward schema, the number
of annotation contents stored is the same as the number of time series tuples, even if the
annotation contents are all equal (in the case of a single annotation associated with the
entire time series).

In every experiment execution, all time series tuples were annotated, that is, the
series may be annotated with a single annotation, i.e., the annotation interval is the
entire series, or the series may be annotated with 120 thousand annotations, i.e., each
annotation interval has a single tuple.

Two experiments have been performed:

• Storage experiment: This experiment compares the space needed (in Mb) to store
a time series with all its associated annotations in our schema and in the straight-
forward schema. Figure 4.12 shows the experiment results. The space required in
the straightforward schema is constant, since it stores annotations as an attribute in
the time series table (annotations stored together with the annotated data). In our
schema, the space required remains approximately constant until 10,000 annotations
are inserted. After that, storage increases rapidly as too much space gets consumed
in order to link the annotations to their associated time interval in the time series
(annotations stored separated from the annotated data). This deterioration is how-
ever not a problem in the majority of cases, since it is unlikely that a single time
series is associated with such a number of annotations. For the general annotation
use case, our schema achieves around 30% storage savings when compared with the
straightforward case.

4.3. Tests and validation 41

Figure 4.12: Storage overhead experiment

• Query performance experiment: This experiment compares the performance of
a query in our schema and in the straightforward schema. The query used in this
experiment represents a request to “return all annotations with a given content”.
This query was chosen since it is one of the most common queries for the domain in
question (agriculture). Query processing time was measured using SQLite command
line shell with CPU timer measurements enabled [32]. The results are measured in
milliseconds and represent the mean value of 10 executions. Figure 4.13 shows the
experiment results. The query performance in the straightforward schema is almost
constant (larger than 80ms), since it needs to go over all 120 thousand annotation
contents, regardless of the number of annotations. In our schema, query performance
is much better (under 10ms) up to 60,000 annotations and increases up to values
close to those of the straightforward schema when the number of annotations equals
the number of time series values. Therefore, for the general annotation use case, our
schema achieves an order of magnitude better performance when compared with the
straightforward case.

4.4. Conclusions 42

Figure 4.13: Query performance experiment

4.4 Conclusions
This chapter presented the implemented application, showing use cases and highlighting
implementation aspects. It also showed how the proposed framework behaves when com-
pared to the straightforward schema from [4]. Chapter 5 presents conclusions and future
work possibilities.

Chapter 5

Conclusions and Future Work

5.1 Conclusions
This dissertation handled the problem of managing, within a database, annotations associ-
ated with time series. It presented the design of a framework to manage these annotations
in a relational database and the database model used. Unlike other approaches in the
literature, which only allow one annotation associated with an entire time series, the pro-
posed framework makes it possible to associate an annotation with parts of time series.
It also supports associating an annotation with multiple time series simultaneously.

The main idea behind the proposed framework is the association of an annotation
only with its respective time interval, instead of associating it with the series values.
Annotations are also stored apart from the annotated data, which requires less storage
space. The framework also allows the versioning of annotations, much demanded by
experts, since they can review and restore previous annotations states.

Serial Annotator is a smart phone application used to validate the framework. It has
been implemented and tested with real data provided by EMBRAPA experts. The appli-
cation has also been handled to EMBRAPA so that it could be tested on real situations
and was deemed a suitable tool for agricultural field research. Since it runs on a smart
phone, it allows experts to analyze data and create annotations while working in external
locations.

The results of the validation tests executed with the application showed that it out-
performs the benchmark schema, requiring less storage and presenting better performance
for the execution of at least one of the most common query scenarios.

43

5.2. Future work 44

5.2 Future work
There are several theoretical and implementation-wise extensions to this work. Some of
them appeared during reviews with peers and EMBRAPA experts. This section presents
these ideas as possible extensions of this work:

• Semantic annotations: This work was based on free textual annotations, that
is, there is no formal vocabulary for annotations. This creates inconsistencies and
makes it almost impossible for the annotations to be interpreted by machines. The
usage of semantic annotations, where the annotations use a formal vocabulary based
on classes of specific ontologies, would allow the interpretation and interoperability
of these annotations across systems.

• Disassemble annotations: Since the proposed framework deals with textual an-
notations, it is possible that a stored annotation represents multiple annotations.
For instance, the annotation “corn,rice” is, in fact, a combination of annotations
“corn” and “rice”. This creates a problem for query processing, as a query for
“corn” would also return results of type “rice”. Future extensions of this work could
therefore focus on means to disassemble multiple annotations.

• Collaborative annotations: In the proposed framework, annotations are seen as
static labels. If an expert changes an annotation, a new version is created. This is
not ideal when experts want to collaborate over annotations, since many pointless
versions of the annotation would be created just to store the expert discussions. Fu-
ture extensions of this work shall consider using ideas from related work mentioned
in section 2.4 to enhance collaboration among experts.

• Automatic annotations based on patterns: As mentioned in section 2.1, most
research on time series concentrates on data mining. Future extensions of this work
could deal with data mining in order to allow for automatic annotation of time
series based on pattern similarity. That is, given a time series S, which has an
associated annotation A on a time interval (t1,t2), and given that in this interval
the time series has the pattern P, annotate all time series in the database which
have a pattern similar to P with annotation A in the corresponding time interval.

• Improve stream capabilities: The smart phone application described in section
4.2 has the capability of receiving stream time series data from other sources (ap-
plications, sensors) in the smart phone. However, this interface has yet to be tested
with a real streaming data source. The interface uses the Android framework In-
tents [12] to capture incoming data storage requests, and may therefore not be able
to cope with a high data incoming rate.

5.2. Future work 45

• Inter-annotation association: The proposed annotation storage methodology
does not allow the same annotation to be associated with different time intervals.
This creates a limitation when two annotations in different time series have a causal-
ity relationship. That is, suppose that time series S1 has pluviometric values for a
specific geographic position and that time series S2 has NDVI values for the same
position. Since rain will directly affect the NDVI value, annotations in S1 are likely
to be related to annotations in S2 that appear some time in the future. For instance,
the annotation “heavy rain” in S1 may be related to annotation “crop increase” in
S2. It would be reasonable for an expert to create only one annotation contem-
plating both observations in the two series, but this is not possible in the current
framework. The Annotea project [33, 15] has a solution to relate annotations and
might be used to solve this problem.

• Additional queries: Many of the queries listed in section 3.4 could not be im-
plemented in the smart phone application due to time constraints. Most of those
queries have been discussed with EMBRAPA experts and are considered to be es-
sential in future versions of the application. It is also possible that further queries
(not listed in section 3.4) will be specified when the application is put to use in the
field.

• Non-textual annotations: There are several formats of annotations in the liter-
ature, as mentioned in section 2.2. Another extension possibility would be to use
non-textual annotations. This would require, among others, changing the proposed
model.

Bibliography

[1] Amiguet-Vercher, J., Apers, P., and Wombacher, A. The Identification
problem: A description. In Proceedings of the 8th World Congress on Services
(Hawaii, USA, 2012), pp. 33–40.

[2] Aoto, R., and Shimizu, T. Propagation of Multi-granularity Annotations. In
Proceedings of the 22nd International Conference on Database and Expert Systems
Applications (Toulouse, France, 2011), vol. 6861, pp. 589–603.

[3] Berners-lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific
American Magazine (2001), 34–43.

[4] Bhagwat, D., Chiticariu, L., Tan, W.-C., and Vijayvargiya, G. An anno-
tation management system for relational databases. The VLDB Journal 14, 4 (Oct.
2005), 373–396.

[5] Chapman, A. P., Jagadish, H., and Ramanan, P. Efficient Provenance Stor-
age. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (Vancouver, Canada, 2008), pp. 993–1006.

[6] Cheney, J., Chiticariu, L., and Tan, W.-C. Provenance in Databases: Why,
How, and Where. Foundations and Trends in Databases 1, 4 (2007), 379–474.

[7] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E.
Querying and Mining of Time Series Data: Experimental Comparison of Represen-
tations and Distance Measures. In Proceedings of the VLDB Endowment (Auckland,
New Zealand, 2008), pp. 1542–1552.

[8] Duchenne, O., Laptev, I., Sivic, J., Bach, F., and Jean, P. Automatic
Annotation of Human Actions in Video. In Proceedings of the 12th International
Conference on Computer Vision (Kyoto, Japan, 2009), no. Section 3, pp. 1491–1498.

46

BIBLIOGRAPHY 47

[9] Eltabakh, M. Y., Aref, W. G., Elmagarmid, A. K., Ouzzani, M., and
Silva, Y. N. Supporting Annotations on Relations. In Proceedings of the 12th In-
ternational Conference on Extending Database Technology (Saint-Petersburg, Russia,
2009), no. 1, pp. 379–390.

[10] Euzenat, J. Eight Questions about Semantic Web Annotations. IEEE Intelligent
Systems 17, 2 (2002), 55–62.

[11] Fu, T.-c. A review on time series data mining. Engineering Applications of Artificial
Intelligence 24, 1 (2011), 164–181.

[12] Google. Android developers web site. http://http://developer.android.com/,
2012. [Online; accessed 17-November-2012].

[13] IBGE. Agronegocio - Portal Brasil. http://www.brasil.gov.br/sobre/economia/
setores-da-economia/agronegocio/, 2012. [Online; accessed 10-October-2012].

[14] Ivanov, I., Vajda, P., Goldmann, L., Lee, J.-S., and Ebrahimi, T. Object-
based Tag Propagation for Semi-Automatic Annotation of Images. In Proceedings
of the 11th International Conference on Multimedia Information Retrieval (Philadel-
phia, USA, 2010), ACM Press, pp. 497–506.

[15] Kahan, J., and Koivunen, M.-r. Annotea : An Open RDF Infrastructure for
Shared Web. In Proceedings of the 10th international conference on World Wide Web
(New York, USA, 2001), pp. 623–632.

[16] Lesaffre, M., and Tanghe, K. The MAMI Query-By-Voice Experiment: Col-
lecting and annotating vocal queries for music information retrieval. In Proceedings of
the 4th International Conference on Music Information Retrieval (Baltimore, Mary-
land, USA, 2003), pp. 65–71.

[17] Lin, J., Keogh, E., Wei, L., and Lonardi, S. Experiencing SAX: a novel
symbolic representation of time series. Data Mining and Knowledge Discovery 15, 2
(Apr. 2007), 107–144.

[18] Lin, J., and Li, Y. Finding Approximate Frequent Patterns in Streaming Medi-
cal Data. In Proceedings of the 23rd International Symposium on Computer-Based
Medical Systems (CBMS) (Perth, Australia, 2010), IEEE, pp. 13–18.

[19] Ma, X., Lee, H., Bird, S., and Maeda, K. Models and Tools for Collabora-
tive Annotation. In Proceedings of the 3rd International Conference on Language
Resources and Evaluation (Las Palmas, Spain, 2002).

BIBLIOGRAPHY 48

[20] Macario, C. G. N. Anotação Semântica de Dados Geoespaciais. PhD thesis,
Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil, 2009.

[21] Mariote, L. E. Mineracao de series temporais de dados de sensores. Master thesis,
Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil (2008).

[22] Mariote, L. E., Medeiros, C. B., Torres, R. S., and Bueno, L. M. TIDES
- a new descriptor for time series oscillation behavior. Geoinformatica 15, 1 (June
2011), 75–109.

[23] Marketoracle. The great depression. http://www.marketoracle.co.uk, 2012.
[Online; accessed 5-April-2012].

[24] Medicalmingle. Normal ECG. http://www.medicalmingle.com, 2012. [Online;
accessed 5-April-2012].

[25] Mornpen. About the Mornington Peninsula. http://www.mornpen.vic.gov.au/,
2012. [Online; accessed 5-April-2012].

[26] Nasa. Normalized Difference Vegetation Index (NDVI). http://www.brashttp:
//earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_
vegetation_2.php, 2012. [Online; accessed 21-December-2012].

[27] Oren, E., Möller, K. H., Scerri, S., Handschuh, S., and Sintek, M. What
are Semantic Annotations? Technical Report, DERI Galway (2006).

[28] Park, J., Nguyen, D., and Sandhu, R. A Provenance-based Access Control
Model. In Proceedings of the 10th Annual International Conference on Privacy,
Security and Trust (Paris, France, July 2012), pp. 137–144.

[29] RDF. RDF. http://www.w3.org/RDF/, 2013. [Online; accessed 22-June-2013].

[30] Snodgrass, R., and Ahn, I. Temporal Databases. IEEE Computer 19, 9 (1986),
35–42.

[31] Sousa, S. R. Gerenciamento de Anotações Semânticas de Dados na Web para Apli-
cações Agrícolas. Master thesis, Universidade Estadual de Campinas (UNICAMP),
Campinas, SP, Brasil (2010).

[32] SQLite. SQLite Home page. http://www.sqlite.org/, 2012. [Online; accessed
17-November-2012].

[33] W3C. The Annotea Project. http://www.w3.org/2001/Annotea/, 2013. [Online;
accessed 22-June-2013].

BIBLIOGRAPHY 49

[34] Weng, C., and Gennari, J. H. Asynchronous Collaborative Writing through
Annotations. In Proceedings of the Conference on Computer Supported Cooperative
Work (Chicago, USA, 2004), ACM Press, pp. 578–581.

[35] Wu, X., Zhang, L., and Yu, Y. Exploring Social Annotations for the Seman-
tic Web. In Proceedings of the 15th International Conference on World Wide Web
(Edinburgh, Scotland, 2006), pp. 417–426.

[36] Zonta, G. P. J., Daltio, J., and Medeiros, C. B. Multimedia Semantic
Annotation Propagation. In Proceedings of the 10th International Symposium on
Multimedia (California, USA, Dec. 2008), pp. 509–514.

