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Abstract. Water becomes, every day, more scarce. Reliable information about
volume and quality in each watershed is important to management and proper
planning of their use. Data-intensive science is being increasingly needed in
this context. Associated analysis processes require handling the drainage net-
work that represents a watershed. This paper presents an ongoing work that
explores geographic watershed data using graph databases – ascalable and
flexible kind of NoSQL databases. The Brazilian Watershed database is used
as a case study. The mapping between geographic and graph models is based
on the natural network that emerges from the topological relationships among
geographic entities.

1. Introduction and Motivation
During the last decade, the volumes of data that are being stored have increased massively.
This has been called the “industrial revolution of data”, and directly affected the world
of science. Nowadays, the available data volume easily outpaces the speed with which
it can be analyzed and understood [Fry 2004]. Computer science has thus become a key
element in scientific research.

This phenomenon, known as eScience, is characterized by conducting joint re-
search in computer science and other fields to support the whole research cycle, from
collection and mining of data to visual representation and data sharing. It encompasses
techniques and technologies for data-intensive science, the new paradigm for scientific
exploration [Hey et al. 2009].

Besides the huge volume, the so-called “big data” carries many heterogeneity
levels – including provenance, quality, structure and semantics. To try to deal with
these requirements, new database models and technologies emerge aiming at scala-
bility, availability and flexibility. The termNoSQLwas coined to describe a broad
class of databases characterized by non-adherence to properties of traditional relational
databases [Hecht and Jablonski 2011]. It encompasses different attempts to propose data
models to solve a particular data management issue.

Geospatial big data (i.e., big data with a geographic location component) faces
even more challenges – it requires specific storage, retrieval, processing and analysis
mechanisms [Amirian et al. 2013]. In addition, it demands improved tools to handle
knowledge discovery tasks.

The more widely accepted kinds of NoSQL databases include key-value, docu-
ment, column-family and graph models. Of these, graph databases are the most suitable



choice to handle geospatial big data [Amirian et al. 2014]. Indeed, graphs are the only
data structure that natively deals with highly connected data, without extra index struc-
tures or joins. No index lookups are needed for traversing data, since every node has links
to its neighbors. Besides, in GIS, topological relationships play an important role. These
relationships can be naturally modeled with graphs, providing flexibility in traversing
geospatial data based on diverse aspects.

Geospatial data about water resources fits these graph connectivity criteria – e.g.,
watersheds or drainage networks. Owing to the shortage of drinking water, reliable in-
formation about volume and quality in each watershed is important for management and
proper planning of their use. A watershed is usually represented as drainage network, with
confluences, start and end points connected bydrainage stretches(the network edges).

This paper presents an ongoing work that explores geospatial watershed data tak-
ing advantage of graph databases. The goal is to show that this scenario provides ad-
ditional opportunities for knowledge discovery tasks through classical graph algorithms.
The Brazilian Watershed database is used as a case study. The mapping between geospa-
tial and graph models is based on the natural network that emerges from the topological
relationships among geographic entities.

The rest of this paper is organized as follows. Section 2 contains a brief description
of the main concepts involved and gives an overview of the Brazilian Watershed relational
database. Section 3 presents the process of loading watersheds to a graph database and
presents results of important and recurrent queries over watersheds. Some research chal-
lenges involved are presented in section 4. Finally, section 5 presents conclusions and
ongoing work.

2. Research Scenario and Theoretical Foundations

2.1. Brazilian Water Resources Database

Brazil is a privileged country in the water-shortage scenario: it holds 12% of the world
total and the largest reserve of fresh water on Earth [Brebbiaand Popov 2011]. Its distri-
bution, however, is uneven across the country. Amazonas, for instance, is the state with
the largest watershed and one of the less populous in Brazil. Furthermore, some rivers are
being contaminated by waste of illegal mining activities (such as mercury), agricultural
pesticides, domestic and industrial sewage leak and garbage.

Reliable information about volume and quality in water resources is extremely
important to management and proper planning of their use. Tothis end, the Brazilian
Federal Government approved in 1997 the National Water Law [Brazil 1997] aiming to
adopt modern principles of management of water resources and created in 2000 the Na-
tional Water Agency (ANA), legally responsible for accomplishing this goal and ensuring
the sustainable use of fresh water.

To organize the required data and support management tasks,ANA adopts the
watershed classification proposed by Otto Pfafstetter [Pfafstetter 1989], constructing a
database that covers the entire country, namedBrazilian Ottocoded Watershed. This
database represents the hydrography as a drainage network:a set of drainage points and
stretches. This network is represented as a binary tree-graph, connected and acyclic,



whose edges – the drainage stretches – go from the leaves to the root, i.e., upstream to
downstream.

The Brazilian drainage network is composed by 620.280 drainage points (vertices,
in graph terms) and 620.279 drainage stretches (edges). Drainage points represent diverse
geographic entities:

(i) a watercourse start point, usually a spring or water source;
(ii) a watercourse end point, usually a river mouth;
(iii) a stream mouth point, which flows into the sea; and
(iv) the shoreline start or end point, two reference points in the coast (one of each) that

delimit the shoreline line, being the integrating elementsof the entire drainage
system.

The first three kinds of drainage points can be seen in Figure 1. The degree of a
drainage point represents its valence, value 1 represents start or end points and value 3
represents confluences.

Figure 1. Kinds of Points in Drainage Network

The drainage stretches, on the other hand, represent only one geographic entity:
the connection between two drainage points. Each stretch has two important attributes:
(i) the hydronym, i.e., the name of the water body to which it belongs; and (ii) the hydro-
graphic catchment area, which represents its importance inthe drainage network – higher
values indicate critical stretches with large areas of water catchment.

2.1.1. Cartographic Aspects

The scale of the Brazilian drainage network varies accordingto the cartographic mapping
used as base in each geographic region, as shown in Figure 2. The Brazilian official



cartography, projected in the WGS84 Spatial Reference1 is the start point of the mapping
process. The steps of the hydrographic vectorization comprise the representation of each
watercourse as a one-line entity, and identification of their crossing areas as start, end or
confluence points. Digital elevation models (such as SRTM - Shuttle Radar Topography
Mission2) are usually applied in the process of layout refine.

Research on specific watersheds is funded according to their strategic or economic
importance, thus generating more detailed data in some regions. Figure 2 shows part of
the drainage stretches in three scales: 1:1.000.000 (the majority of Brazilian watersheds),
1:250.000 (river Paraiba do Sul) and 1:50.000 (basin of rivers Piracicaba, Capivari and
Jundiai)3. The latter, for instance, supplies one of Brazil’s most populated regions and
is the target of several studies, headed by the “PCJ Consortium”. This consortium is
composed by a group of cities and companies concerned about planning and financial
support actions towards the recovery of water sources and raising societal awareness about
the importance of watersource issues.

Figure 2. Different Drainage Stretch Scales in Drainage Network

The cartographic representation of the drainage network provides an important
input to territorial analyses, i.e., when it is necessary tooverlay the hydrographic data
with other layers (using the geospatial information as the integrating component), in an
attempt to understand some spatial phenomenon.

1spatialreference.org/ref/epsg/4326
2www2.jpl.nasa.gov/srtm
3Metadata available in: http://metadados.ana.gov.br/geonetwork/srv/pt/main.home?uuid=7bb15389-

1016-4d5b-9480-5f1acdadd0f5



2.1.2. Logical Elements

There are at least four important logical elements in the Brazilian water resources
database: hydronyms, hydrographic catchment areas, watersheds and main watercourses.
The hydronym is an immutable attribute associated with eachdrainage stretch that indi-
cates the logical element commonly known as “river”. A riveris composed by all drainage
stretches that are connected and have the same hydronym. Figure 3 (a) partially shows
the drainage network under this perspective.

Figure 3. (a) Rivers: continuous drainage stretches with the same hydronym and
(b) HCA: drainage stretches and their hydrographic catchment area

The other three elements are computed. Every time that the drainage network is
updated these elements have to be recalculated. Updates occur for instance during some
cartographic refinement process (more accurate scales) or to reflect human actions (e.g.,
by river transposition or construction of artificial channels). Updates do not occur very
often. Thus, if the algorithms that construct the network are well defined, it is possible to
materialize network elements, and update them whenever necessary.

The hydrographic catchment area (HCA) is a drainage stretch attribute, repre-
sented as a polygon, that delimits the water catchment area of the stretch. This delimita-
tion is highly influenced by relief, given it influence in the water flow. Although HCA is
a geospatial attribute, as shown in Figure 3 (b), only its area is relevant in most analyzes.

Watersheds and watercourses are two correlated elements – one is used to deter-
mine the other in a recursive way. A watershed is the logical element that delimits a
drainage system channel. It is the official territorial unitfor the management of water
resources adopted by ANA. Unlike a basin – that refers only towhere the water passes
through – a watershed comprises the entire area that separates different water flowing.
Every watershed has a main watercourse.

ANA adopts the Otto Pfafstetter Coding System [Pfafstetter 1989](ottocode) to
define the watershed division process and watercourse identification. Each digit in the
ottocode embeds a context about the stream (the main river orinter-basin, for instance).
The main watercourse of a watershed is a set of connected drainage stretches selected by
a traversal in the sub drainage network. It is constructed byselecting, in every confluence,
the stretch with the largest hydrographic catchment accumulated area upstream (from the
mouth to the spring). Following the watercourse layout, thewatershed can be split in
a set of sub-watersheds and the ottocode allows retrieving their hierarchical relations.



A n − level watershed has a code withn digits. Figure 4 illustrates one step of this
methodology: 4 (a) shows the drainage network of the watershedRio Trombetasand its
main watercourse, which has the ottocode 454 (level 3). Figure 4 (a) shows the 9 new
watersheds created (level 4) by applying recursively the same methodology. The original
code 454 is held as prefix to new watershed codes. More detailsabout this methodology
can be found in [Pfafstetter 1989].

Figure 4. Otto Pfafstetter methodology

As can be seen, there are many studies that can take advantageof the network
structure of this database and its logical preprocessed elements, even without considering
geospatial aspects. Graph algorithms can be used, for instance, to ensure the network
consistency or even to determine the main watercourse in a watershed; the latter can be
found through a traversal algorithm in a subset of the drainage network, using higher HCA
values as the navigation criterion.

2.2. Graph Data Management Paradigm

The graph data management paradigm is characterized by using graphs (or their general-
izations) as data models and graph-based operations to express data manipulation. It is
relationship driven, as opposed to the relational data model which requires the use of for-
eign keys and joins to infer connections between data items.Graph databases are usually
adopted to represent data sets where relations among data and the data itself are at the
same importance level [Angles and Gutierrez 2008]. Graph data models appeared in the
90’s; nevertheless, only in the past few years have they beenapplied to information man-
agement systems, propelled by the rise of social networks such as Facebook and Twitter.

The formal foundation of all graph data models is based on variations on the
mathematical definition of a graph. In its simplest form, a graphG is a data struc-
ture composed by a pair(V,E), whereV is a finite non empty set of vertices andE
is a finite set of edges connecting pairs of vertices. On top ofthis basic layer, several
graph data structures were proposed by the database community, attempt to improve ex-
pressiveness, representing data in a better (and less ambiguous) way, such as property



graph (or attributed graph) [Rodriguez and Neubauer 2010, Robinson et al. 2013], hyper-
node [Levene and Loizou 1995] and RDF graph [Bonstrom et al. 2003].

Considering the edges, a graph can be directed (i.e., there isa tail and head to each
edge); single relational or multi-relational (i.e., multiple relationships can exist between
two vertices). The connection structure affects the traversal. An edge can have different
meanings, such as attributes, hierarchies or neighborhoodrelations. Despite their flexibil-
ity and efficient management of heavily linked data, there isno consensual data structure
and query language for graph databases.

One of the most popular graph structures is the property graph (or attributed
graph) [Rodriguez and Neubauer 2010, Robinson et al. 2013]. Ittries to arrange vertex
and edge features in a flexible structure through key-value pairs (e.g., type, label or direc-
tion).

3. Implementation

3.1. Original Relational Database: pgHydro

The pgHydro project4 – developed by ANA and started in 2012 – aims to implement a
spatial relational database to manage the hydrographic objects that compose the Brazilian
Water Resources database [Teixeira et al. 2013]. It encompasses tables, constraints and
views, and a set of stored procedures to ensure data consistency and to process routine
calculations. The conceptual model of pgHydro is illustrated in Figure 5.

Figure 5. PgHydro Database Conceptual Model

PgHydro was implemented in PostGIS/PostgreSQL and a Pythoninterface. PgHy-
dro is a free and open source project and is available for companies and organizations with

4pghydro.org



an interest in management and decision making in water resources. More spatial analysis
can be done using GIS, such as ArcGIS5 or QuantumGIS6.

3.2. Proposal Graph Database: HydroGraph

We have transformed ANA relational database (the drainage network) into a graph
database, here denoted byGHydro (partially illustrated in Figure 6), keeping the same
basic structure of vertices (the drainage points) and edges(the drainage stretches). This
data model makes easier to understand the drainage network as it really is: a binary tree-
graph, connected and acyclic, whose edges go from the leavesto the root.

Figure 6. GHydro: Brazilian Drainage Network as a Graph Database

The graph database chosen was Neo4j7 – a labeled property multi-
graph [Robinson et al. 2013]. Every edge must have a relationship type, and there is
no restrictions about the number of edges between two nodes.Both vertices and edges
can have properties (key-value pairs) and index mechanism.Neo4j implements a native
disk-based storage manager for graphs, a framework for graph traversals and an object-
oriented API for Java. It is an open source project and it is nowadays the most popular
graph database8.

The creation and population ofGHydro were done throughLOAD CSV command
– a load engine provided by Neo4j. The input could be a local ora remote classical CSV

5www.arcgis.com
6www.qgis.org
7neo4j.com
8According to DB-Engines Ranking of Graph DBMS (accessed on September, 2015) [db-

engines.com/en/ranking/graph+dbms]



file – containing a header and a set of lines in which each line represents a record, and
the line is a set of fields separated by comma. The CSV files were extracted from the
PostgreSQL database using theCOPY command9. Figure 7 shows some of the LOAD
CSV commands that giving rise toGHydro (commands (i) to drainage points and (iii)
to drainage stretches). Commands (ii) and (iv) ensure the integrity constraint of unique
values for all the identifiers.

Figure 7. LOAD CSV commands

TheLOAD CSV command is based on Cypher syntax, the graph query language
available on Neo4j [Robinson et al. 2013]. Cypher is a pattern oriented, declarative query
language. It has two kinds of query structures: a read and a write query structure. The
pattern representation is inspired by traditional graph representation of circles and arrows.
Vertex patterns are represented in parenthesis; and edge patterns in brackets between hy-
phens, one of which with a right angle bracket to indicate theedge direction. For example,
the expression(a)-[r:RELATED]->(b) is interpreted as two vertex patternsa andb and
one edge patternr, typeRELATED, that starts on vertexa and ends in vertexb.

3.3. PgHydro Functions

The most important functions of pgHydro are:

1. To validate drainage network consistent;
2. To define the direction of water flow;
3. To apply Otto Pfafstetter’s watershed coding system;
4. To select the set of upstream/downstream stretches;
5. To calculate the upstream hydrographic/downstream catchment area.

As can be readily seen, most of these functions can be solved applying to graph
algorithms onGHydro. Execute these tasks over relational databases would require many
join operations – one of the most computationally expensiveprocesses in SQL databases.
Another possibility would be to build an in-memory network representation on top of the

9www.postgresql.org/docs/9.2/static/sql-copy.html



relational storage model and to use APIs and programming languages. Graph databases
exempt the need of intermediate models from storage to application logic layer.

Consistency tests over the drainage network concern mainly two aspects: connec-
tivity of all stretches and the binary tree structure. In graph terms – consideringGHydro

implementation – we can apply the connected component analysis solution. A connected
component in a graphG is a subgraphH of G in which, for each pair of verticesu and
v, there is a path connectingu andv. If more than one connected component is found
in GHydro, the database is inconsistent. The binary tree structure, on the other hand, is
checked selecting all vertices whose degree value are different from 1 (start or end points)
or 3 (confluences).

The selection of the upstream stretches can be done applyingto Depth-First
Search, starting on the stretch of interest and ending on thewatershed root. To calculate
the upstream hydrographic catchment area, we sum the HCA fromeach drainage stretch
returned in the previous selection. The same approach can beapplied to downstream
stretches, using the opposite navigation direction and aggregating all subtrees.

The calculation of the Otto Pfafstetter watershed coding isa more complex task,
but it is still a graph traversal. The base task is to define themain watercourse. Here, un-
like the previous computations we need to establish graph traversal criteria on each node:
selecting, at every confluence, the stretch with the largestHCA accumulated upstream.

Among all these functions, only the definition of water flow direction is actually
a GIS task and depends on the geospacial information. This calculation involves solving
equations that examine the relationship among several variables such as stream length,
water depth, resistance of the surface and relief.

4. Research Challenges

There are at least three important challenges involved in our approach. The first is related
to the incompleteness of graph data models. According to theclassical definition, a com-
plete data model should be composed by three main elements: (i) data structure types,
(ii) operators to retrieve or derive data and (iii) integrity rules to define consistent the
database states [Codd 1980]. Related work on graph data modelsshows that they are in-
complete concerning least one of these aspects. Most of themconcern only data structures
– hypergraphs, RDF or property graphs. Others describe only query languages or APIs
to manipulate or retrieve data. There are few attempts to discuss consistency or ACID
properties over graph data models. This scenario hampers the formalizing of a complete
graph data model. Besides, most implementations of graph databases do not adhere to the
theoretical models.

Second, traditional Relational Database Management Systems (RDBMS) are the
most mature solution to data persistence and usually the best option when strong consis-
tency is required. Besides, there are many spatial extensions over RDBMS current used
as foundation to geospatial systems and services. Therefore, in some cases there is need
for the coexistence of both models – relational and graph – dividing tasks of manage-
ment and analysis according to their specialties. This requires the development of hy-
brid architecture to enable the integration of relational and graph databases, as proposed
by [Cavoto and Santanche 2015].



Finally, the task of network-driven analysis is not completely solved once the
graph database is available. The graph data design (i.e., which data is represented as
vertices, which is represented as edges and what kind of properties they have) can stream-
line or even render non-viably the extraction of topological or graph properties. There is
no simple way to crossing through different designs in graphdatabases. This challenge
is also goal of our research, as described in [Daltio and Medeiros 2014]. The idea is to
specify and implement an extension of the concept of view (from relational databases) to
graph database, thereby allowing managing and analyze a graph database under arbitrary
perspectives. Consider this specific database, it would be possible to explore not only the
drainage network, but also the network among the logical elements – rivers, watersheds
and watercourses.

5. Conclusions

This paper presented our ongoing work to construct a graph database infrastructure to sup-
port analysis operations on the Brazilian Water Resources database. Our research shows
the importance of graph driven analysis over the drainage network, rather than the compu-
tationally expensive process of relational databases for such analysis. It was presented the
GHydro – a version of the original relational database implementedon Neo4j, composed
by 620.280 drainage points (vertices) and 620.279 drainagestretches (edges).

Our research takes advantage of graph structures to model and navigate through
relationships across the network and its logical elements –watersheds and watercourses.
This helps analysts’ work in analysis and forecast. However, given the complexity of
geospatial data – mainly on big data proportions – there is still no single solution to solve
all persistence, management and analysis issues. Hybrid architecture approaches seem to
be the most flexible and complete choice.
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