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Abstract. Biologists increasingly need a unified view to understand and discover relationships among data elements
scattered along data sources with different levels of heterogeneity. Existing approaches usually adopt ad-hoc heavy-
weight integration strategies, requiring a costly upfront effort involving a monolithic chain of steps to handle specific
formats/schemas, with low or no reuse. This article proposes the conception of a multiscale-based dataspace architec-
ture, called LinkedScales. It departs from the notion of integration-scales within a dataspace, and defines a systematic
and progressive integration process via graph-based transformations over a graph database. LinkedScales aims to pro-
vide a homogeneous view of heterogeneous sources, allowing systems to reach and produce different integration levels
on demand, going from raw representations (lower scales) towards ontology-like structures (higher scales). We describe
inner aspects of the architecture and its transformation process by introducing the Multiscale Transformation Graph,
which tracks the transformation process among scales. Although the proposed framework can be applied to several
scenarios, this work focuses on the biology domain addressing the organism-centric analysis scenario. Obtained results
reveal the viability of the framework and its implementation to integrate relevant resources for the organism-centric
scenario.

Categories and Subject Descriptors: H.2.0 [Database Management]: General; H.3.0 [Information Storage and
Retrieval]: General

Keywords: Data Integration, Dataspace, Multiscale, Organism-centric Analysis

1. INTRODUCTION

Data-centric domains as biology are increasingly adopting different systems to produce, store and
analyze datasets regarding specific processes and aspects of biological organisms – e.g., experiments,
descriptions, collections, simulations, etc. However, heterogeneity hampers the integrated exploration
of knowledge across systems and research groups [Hey et al. 2009]. Therefore, integration remains
a key issue since providing a “big picture” view of data may offer new perspectives and insights for
researchers [Elsayed and Brezany 2010; Paton et al. 2012].

This research focuses on a specific integration paradigm known as Dataspaces [Franklin et al. 2005].
It advocates the advantages of an on-demand lightweight integration to comply with the dynamicity
of modern environments, against the classic heavyweight upfront techniques. One of the advantages of
on-demand integration is the ability of readily shaping the final outcome according to present needs.

A key issue with on-demand integration, addressed in this investigation, refers to the long chain
of steps from source to target. In one extreme, biologists want to treat knowledge at a conceptual
level, handling data in an integrated fashion. In the other extreme, there are several problem-relevant
heterogeneous data sources, comprising files, DBs, ontologies, etc. Between both extremes, there
might have a spectrum of intermediary integration steps, which are difficult to determine.
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In this article, we propose an approach named LinkedScales, which aims at splitting the integration
steps as discrete scales. Each scale encompasses common aspects and routines related to a specific
integration step. The main objective of LinkedScales is to go from a source-related lower scale to
a user-focused higher scale. Inspired by the layered software architecture, each scale offers to the
immediate upper scale a pre-agreed model (interface), encapsulating a given type of heterogeneity of
the lower scale. This investigation defines the different scales, formalizing them in a framework based
on a graph model. In lower scales, we depart from a myriad of heterogeneous sources available. The
upper scales enables to tailor the model according to specific needs, i.e., the integration model fits the
user needs, instead of the opposite.

We demonstrate the applicability of our proposal in the biological domain. In such dynamic con-
text, reuse plays a key role and traditional on-demand solutions usually rely on ad-hoc techniques,
implementing the entire integration chain. In our proposal, the encapsulation of scales in LinkedScales
enables to customize only algorithms of a specific scale, reusing the remaining of the chain. Obtained
results relying on real-world application scenarios experimenting the approach indicate the adequacy
and usefulness of the LinkedScales proposal for organism-centric analysis.

The remaining of this article is organized as follows: Section 2 presents the problem in our research
scenario and how existing work concerning data integration address it. Section 3 reports on the
proposed Linkedscales framework. Section 4 details the formalization of the multiscale graph model.
Section 5 describes implementation aspects and experiments showing a complete example to illustrate
the solution. We also discuss its benefits. Section 6 wraps up the article with conclusions and presents
future work.

2. FOUNDATIONS AND RELATED WORK

2.1 Challenges on organism-centric analysis for data integration

Organism-centric analysis refers to an usual approach conducted by biologists in which organisms
– i.e., species or taxonomic groups – are the central focus of the analysis and data are integrated
around them. A common task faced by biologists conducting an organism-centric research refers to
the construction of "views" of data, we call here profiles [Washington et al. 2009]. Profiles vary
according to the focus of interest, but they can be seen as a subset of descriptive data of organisms
selected for a research [Hedges 2002]. The construction of such profiles involves combining data usually
fragmented in heterogeneous sources, requiring further efforts from biologists to collect and combine
pieces coming from multiple repositories and several files with different formats.

Consider the example of profile illustrated in Fig. 1, defined by biologists interested in validating
hypotheses regarding the evolution of “deafness” in frogs. Aiming at understanding why distant
phylogenetic groups of frogs lack middle ear structures, biologists want to gather together as profiles
data regarding morphological traits, habitat, reproduction mode, acoustics and phylogenetic trees of
several species. Morpho-anatomical data would be required to examine whether miniaturisation in
frogs lead to the loss of ear structures, while acoustic data would allow testing the co-evolution of
mutism and deafness, etc. Based on such profiles, biologists might compare organisms in a systematic
way and investigate conditions and associations related with the hypotheses.

Phylogenetic data for the target species of the genus Brachycephalus (shown in Fig. 1) can be
found within the TreeBASE 1 repository – where scientists share their experimental data files – as a
XML/Nexus file. It contains the phylogenetic tree reconstructed from DNA sequences from a study.
Records from IUCN Red List2 intended for conservation contains data regarding the species habitat
in CSV format. Moreover, several phenotipic data can be found from Quaardvark System3 in Excel
format.

1http://treebase.org, 2http://www.iucnredlist.org, 3http://animaldiversity.ummz.umich.edu/quaardvark
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Fig. 1. Profile integrating characteristics scattered across several sources

In this scenario (Fig. 1), biologists spend a lot of time “cutting and pasting” data from each of the
sources and organizing them in spreadsheets before any analysis. On the other hand, a systematic
integration approach requires several steps of integration, due to the different types of heterogeneity,
i.e., different formats (CSV, Excel, Nexus), different structures (tables, trees), different schemas, etc.
Therefore, the combination of different types of datasets may prove challenging, and the integration
of missing data often result in a drastic data trimming and the partial use of the data available.
Furthermore, such biological research has an intrinsic dynamism. For instance, biologists may discover
during their investigations that other characteristics must be taken into account, which might require
further efforts to reflect the new requirements and data on the profiles to make them up-to-date.

2.2 Upfront Data Integration vs. The “Pay-as-you-go” Integration

Motivated by the increasingly need of treating multiple and heterogeneous data sources, data inte-
gration has been the focus of attention in the database community in the past two decades [Hedeler
et al. 2013; Hedeler et al. 2009].

Several data integration strategies have emerged, including federated databases, schema integration
and data warehouses [Haas et al. 2002; Rahm and Bernstein 2001]. A common adopted approach
relies on providing a virtual unified view under a global schema (GS) [Singh and Jain 2011; Kolaitis
2005]. Within GS-based systems, the data stay in their original data sources – i.e. maintaining
their original schemas – and are dynamically fetched and mapped to a global schema under clients’
request [Lenzerini 2002; Hedeler et al. 2013]. In a nutshell, applications send queries to a mediator,
which relates them into several sub-queries dispatched to wrappers, according to meta-data regarding
capabilities of the participating database management systems (DBMSs). Wrappers map queries to
the underlying DBMSs and the results back to the mediator, guided by the global schema. Queries
are optimized and evaluated according to each DBMS within the set, providing the illusion of a single
database to applications [Lenzerini 2002].

The central drawback with such data integration strategy regards the big upfront effort required
to produce a global schema definition [Halevy et al. 2006]. As in some domains different DBMSs
may emerge and schemas are constantly changing, such costly initial step can become impracticable
[Hedeler et al. 2013]. Moreover, several approaches focus on a particular data model (e.g., relational),
while new models also become popular [Elsayed et al. 2006]. As proposed in this investigation, our
approach supports progressive small integration steps as an alternative to this classical all-or-nothing
costly upfront data integration technique.
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Since upfront mapping between schemas are labor intensive and scheme-static domains are rare, pay-
as-you-go integration strategies have gained momentum. Classical data integration approaches might
work successfully when integrating modest numbers of stable databases in controlled environments.
Nevertheless, literature still lacks an efficient and definitive solution for scenarios in which schemas
often change and new data models must be considered [Hedeler et al. 2013]. In a data integration
spectrum, the classical data integration is at the high-cost/high-quality end, while an incremental
integration based on progressive small steps starts in the opposite side. Such incremental integration
can be continuously refined in order to improve the connections among sources.

The notion of dataspaces aims at providing the benefits of the classical data integration approach,
but in a progressive fashion way [Halevy et al. 2006; Singh and Jain 2011; Hedeler et al. 2010]. The
main argument behind the dataspaces proposal is that, in the current scenario, instead of a long wait
for a global integration schema to have access to the data, users would rather to have early access to
the data, among small cycles of integration – i.e., if the user needs the data now, some integration is
better than nothing.

Dataspaces approach of data integration can be divided in a bootstrapping stage and subsequent
refinements. Progressive integration refinements can be based, for instance, on structural analysis
[Dong and Halevy 2007], on users’ feedback [Belhajjame et al. 2013] or on manual/automatic mappings
among sources – if benefits worth such effort. Furthermore, several Dataspace platforms address a
variety of specific scenarios, e.g., SEMEX [Cai et al. 2005] and iMeMex [Dittrich et al. 2009] on the
private information management context; PayGo [Madhavan et al. 2007] focusing on Web-related
sources; and a justice-related dataspace [Dijk et al. 2013].

Although incremental integration approaches have already showed their potentialities, literature
still lacks an architecture that systematizes the progressive integration steps and results according to
integration aspects, providing provenance and reuse of partial results. Systematization, provenance
and reuse are the three pillars of our LinkedScales proposal, introduced in next section.

3. LINKEDSCALES FRAMEWORK

LinkedScales refers to a framework that comprises a multiscale graph model – introduced here and
formally detailed in the next section – and a data architecture which instantiate the model. It aims
at bringing the proposal of multiscale to the data integration chain, systematizing and encapsulating
the data regarding integration steps as graph-based scales.

In our approach, the modern tendency towards progressive integration [Halevy et al. 2006] evolves
in progressive steps within a shared “space”, in which data of several steps coexist, even if not fully
integrated. Over time, extra incremental integration steps are made within the space when benefits
worth the efforts.

LinkedScales is based on an abstract model that organizes the progressive integration chain as a
pile of scales, where the entities in an upper scale are built based on transformations over entities of a
lower scale – the granularity and semantics of the entities vary according to the scale. The integration
starts on the lowest scale, where all original data sources are ingested and transformed into graphs.
Each subsequent scale from this point is a graph derived from the previous scale, taking advantage of
the flexibility of graphs to logically represent different structures along the scales. This model allows
representing operations within and across the scales as transformation procedures in graphs. Scales
are interconnected by an orthogonal graph, supporting traceability among them – i.e., it is possible
to "track" sources/targets of transformations between scales.

In order to address a range of applications which share common integration concerns, we propose a
LinkedScales Primary Data Architecture, defining a starting set of scales, based on previous experiences
on data integration [Mota and Medeiros 2013; Bernardo et al. 2013; Miranda and Santanchè 2013].
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Each scale of this data architecture emphasizes a different level of integration and its respective
abstraction.

Fig. 2 presents an overview of the LinkedScales Primary Data Architecture. It depicts four different
scales of abstraction aiming at going from the raw data sources (lower scales, containing more details
about format and structure) to a conceptual scale (fewer details of format and structure, and focus on
domain-specific concepts). From bottom to top, the scales are: (i) Physical Scale, (ii) Logical Scale;
(iii) Description Scale; and (iv) Conceptual Scale. This primary data architecture was conceived
to be extended, i.e., further scales can appear on top of the conceptual scale to define additional
domain-related views.

Fig. 2. Overview of the LinkedScales Primary Data Architecture

The lowest scale in Fig. 2 – Physical Scale – aims at representing the different data sources in
their original physical format as a graph. The original raw data sources are transformed into a graph
by an ingestion procedure (the Graph Translator in the figure) able to read several specialized formats
– e.g., Excel, CSV, relational tables, XML – and convert them to an equivalent graph representation.
The original structure, format and content of the underlying data sources are reflected in a graph as
far as possible. The role of this scale is to homogenize the physical representation, making explicit
and linkable elements of the original data within sources.

Based on experiences of a previous work that explores a homogeneous representation model for
textual documents independently of formats [Mota and Medeiros 2013], the next scale proposed is
the Logical Scale . It offers a common view to data inside similar or equivalent structural models
represented in the previous scale. Tables and hierarchical documents are examples of structural
models present in the sources containing data regarding organisms. In the previous scale, differences
might exist in the representation of a table within a PDF, a table from a spreadsheet and a table
within a HTML file, since they preserve specificities of their formats. Within the Logical Scale, format
specificities disappear and the three tables are represented alike since they refer to the same structural
model. This leads to a homogeneous approach to process tables, independently of the way that tables
are represented in their original specialized formats.

The Description Scale emphasizes the content (e.g., labels of elements within an XML document
or values in spreadsheet cells) and their relationships. Since models represent relations among data
elements in different ways – e.g., a row in a table can represent data concerning the same entity
while hierarchical relations in a document represent aggregations – the Description Scale reduces all
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logical models to a single unified one, to shift the focus towards the descriptive content, avoiding
heterogeneous models concerns.

The unified model selected for this scale relies on the triple <resource, property, value>, which
is usual in several meta-data standards as Resource Description Framework (RDF2). This scale only
unifies the logical model, but still lacks essential properties of a semantic representation like RDF since
it does not: distinguish entities, adopt controlled vocabularies to represent descriptive properties or
make explicit the semantics of the elements using ontologies. This stands for the role of the next scale.

The highest scale of our data architecture, illustrated in Fig. 2, refers to the Conceptual Scale . It
integrates data of the lower scale in a semantic level, exploits the content and relationships between
nodes to discover and to make explicit through ontologies their latent semantics. Entities are dis-
covered, deduplicated and related to ontologies as instances of classes, or properties and their values.
Therefore, a “textual graph” of the previous scale becomes a graph containing interrelated entities
and their properties/values, with explicit semantics supported by ontologies. We also consider that
predefined ontologies can be straightly interrelated to this scale, to be linked to the inferred entities.

4. MULTISCALE GRAPH MODEL

This section adopts a formal language to define aspects of the abstract model underlying the LinkedScales
approach introducing our Multiscale Graph Model. It aims at facilitating the understanding of the
involved concepts, but, it is not a full-fledged formal definition of the model. We organize three sub-
sections, presenting first the preliminary definitions, followed by the transformation process and the
orthogonal transformation graph.

4.1 Preliminary Definitions

As depicted in Figure 3, the Multiscale Graph Model contains a sequence of scales (S1, S2, . . . , Sn). It
starts from an initial scale S1 and each subsequent scale Si is derived from a previous scale Si−1.
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Fig. 3. LinkedScales graph model

2https://www.w3.org/RDF/
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Inspired by the notion of graph databases, a Scale is defined as a finite, edge-labeled, directed
graph [Wood 2012; Barceló Baeza 2013; Barceló et al. 2014; Cruz et al. 1987]. Formally, let Σ be a
finite alphabet and V be a countably infinite set of node ids. A scale S over Σ is a pair (V,E), being
V a finite set of nodes and E a finite set of edges, where V ⊆ V and E ⊆ V ×Σ× V . Furthermore,
given any two scales Si = (Vi, Ei) and Sj = (Vj , Ej), where Vi ⊆ V and Vj ⊆ V, Vi ∩ Vj = ∅.

Given a scale S = (V,E) and two nodes u, v ∈ V and a label a ∈ Σ, an edge e ∈ E is a triple (u, a, v)
indicating a link between u and v with a label a. A path π in a scale S is a set of edges in E connecting
two nodes (initial and final) in V . Therefore, a path connecting a node v1 and vm is a sequence of
edges π = {(v1, a1, v2), (v2, a2, v3), . . . , (vm−1, am−1, vm)}, where any edge (vi−1, ai−1, vi) ∈ E and any
end node of an edge in the path matches the initial node in the following edge . An empty path π is
a triple (v, ε, v), where v ∈ V and the label is the empty word ε; the length of such path, |π| = 0. The
concept of path plays a key role in our transformation process.

A transformation between two scales is defined in terms of transformations of objects inside these
scales, i.e., objects are the atomic transformation units. An object is defined as a set of paths
O = {π1, π2, . . . , πr}. An object Oh belongs to a scale Si if all nodes/edges of the paths in Oh are
nodes/edges of Si. Figure 3 depicts three objects and a path, O1, O2 belongs to S1, O3 belongs to
S2, and the path π1 ∈ O2.

4.2 Transformation process

LinkedScales is represented as tuple LS = (Si,Ω,Fst), where Si is a scale representing the initial
state, Ω = {C1, C2, . . . , Cn} is a sequence of transformation criteria and Fst is a function Fst :
Si → Si+1 which derives a subsequent scale Si+1 by applying a transformation criteria Ci over a
previous scale Si. The transformation process comprises two steps: match and transform. The
match step aims at finding paths in the subgraphs of a given scale, while the transform step addresses
the production of a transformed subgraph in the upper scale. The example illustrated in Fig. 5 shows
how an instance of a table (T1) with a schema and two rows results in two entities (e4 and e5), each
one containing three paths representing RDF-like triples. Such transformation is based on a pattern
for matching paths in the input and for creating the corresponding nodes and vertices in the output.

The match and transform operations are encapsulated in the concept of criterion. A criteria Cα is
a set of criterion {λ1, λ2, . . . , λn}. A criterion λa is a pair (ma, ta), where ma is a match operation
and ta is a transform operation. Similarly to the SELECT operator in SQL, a match operator meets
a set of objects of a given scale Si, while the respective transform operator derives these objects to
produce a graph in Si+1. Algorithm 1 describes how the scale transformation function produces an
upper scale based on a criteria set.

A pattern in the match operation is defined by a regular expression over the graph. Wildcards
here are indicating the repetition of sub-patterns. While the wildcard * indicates a repetition of a
given subpath in a sequential disposition – i.e., the beginning of a repeated subpath is connected with
the end of the previous one – the wildcard ** indicates a repetition in a parallel disposition – i.e.,
all repeated subpaths are connected to the same origin. The number of repetitions is constrained by
adding the clause [α..β], where α and β are optionals minimum and maximum boundaries, respectively.

Fig. 4 visually illustrates the steps in a transformation that aims at producing RDF-like triples
from an object representing a table (within the Logical Scale), also showing an example of objects
matching the Match clause and the respective transformation (within the Description Scale). The
regular expressions related to the input patterns are represented in the left side, using dashed boxes
to define the scope of each wildcard. It also illustrates the main difference between the two regular
expression wildcards for graphs.

The wildcard * in π∗
x indicates that each matched object instance can have a sequential repetition

of the subpath delimited by the dashed box. The wildcard ** in π∗∗
y indicates that each matched
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Algorithm 1 Scale Transformation
1: procedure Fst(Si, Ci) . Produces a scale Si+1 based on a scale Si and criteria Ci
2: Si+1 ← ∅
3: for each λ ∈ Ci do
4:
5: O ← λmatch(Si) . Returns all matched objects in Si
6:
7: for each object O ∈ O do
8: Stemp ← λtransform(O)
9: Si+1 ← (Si+1 ∪ Stemp)

10: end for each
11: end for each
12: return Si+1

13: end procedure

Fig. 4. Example of a match/transform process

instance can have a parallel repetition of the subpath delimited by the dashed box. The resulting
subgraphs are connected to the same origin, i.e., the node T . The nested pattern π∗

y_i indicates a set
of connected sequences of nodes c, where each sequence is connected to the respective origin r of the
outer pattern.

Following the example of Fig. 4, the match pattern is applied to the lower scale containing a graph
representation of a table. The pattern π∗

x matches the sequence of attributes of the schema in the row
started by node s. The pattern π∗∗

y matches a set of rows started by nodes r; each row corresponds to
a line of the table representing a tuple, formed by a sequence of cells matched by the nested pattern
πy_i∗.

The right box of Fig. 4 illustrates the transform step of a criterion, using a pseudocode inspired in
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the Cypher query language3. The "with" clause defines a scope, which comprises the set of instances
matched by a given pattern. For example, the clause "with π∗∗

y as rows" means that all matched
paths for the pattern π∗∗

y will be available in the inner scope of that clause, as instances of a variable
rows. The inner "foreach" clause navigates through each path rowi of rows. Subsequently, the inner
"with" uses the function nodes() to return only nodes from the path attr and the current rowi. The
innermost "foreach" navigates through all the cells of the row and links the node corresponding to
rowi with a node representing the value of the cell using the corresponding attribute label.

4.3 Multiscale Transformations and the Transformation Graph

For each pair of consecutive scales, there is an orthogonal graph linking the objects of the lower scale to
the respective derived objects of the upper scale. The objects of the lower scale are subgraphs defined
by the match clause of the criterion, as well as objects of the upper scale are the respective derived
subgraphs. Such orthogonal graph is disjoint from the graph containing the data in the scales, and
is called Multiscale Transformation Graph (MTG). The MTG fosters traceability of transformations
along the integration scales, allowing analysis of provenance, reproducibility, reuse, etc.

MTG adopts elements of the PROV Ontology (PROV-O) [Lebo et al. 2013]. Entities are the
sources/targets of transformation in PROV-O and they correspond to objects in our model (cf. Fig. 5).
The transformations between an upper and a lower scales are represented as Activities, which corre-
spond to a transformation criterion of our model.

Fig. 5. Example of transformation between two scales and the corresponding MTG

The example illustrated in Fig. 5 shows how an instance of a table with a schema and two rows
results in two entities (e4 and e5), each one containing three paths representing RDF-like triples. Such
transformation is based on a pattern for matching paths in the input and for creating the corresponding
nodes and vertices in the output.

3http://neo4j.com/docs/stable/cypher-query-lang.html
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The right column in Fig. 5 (Data Graph) shows an example that meets the patterns specified in
Fig. 4 and its respective MTG in the left column (Transformation Graph). The MTG indentifies two
entities (e2 and e3) related to the lower scale based on two respective objects that includes three paths
(π2a, π2b and π2c). The path π2a refers to schema s of the table. Similarly, paths π2b and π2c refer to
the objects representing rows of the table.

The object and respective entity e2 is composed by the path π2b (the first tuple of the table) and
path π2a (the attributes of the schema). The object and respective entity e3 shares with e2 the path
π2a (attributes of the schema) and also refers to the second tuple of the table (π2c). The entities e2
and e3 are the input for the transformation activities triplifya and triplifyb, which "triplificates"
table rows. The triplify activities produce objects represented by entities e4 and e5, which in turn
refers to the paths of the output subgraphs.

5. EXPERIMENTAL SCENARIO: ORGANISM-CENTRIC ANALYSIS VIA LINKEDSCALES

In this section, we describe the implementation of the solution and evaluate its application in a biolog-
ical scenario, exemplifying the transformation between the scales. We present the whole integration
process in a practical scenario, going from the sources to the conceptual scale (organism profiles).

5.1 Implementing the Solution

Several elements and specific technical issues of the proposed framework have being implemented
independently [Mota and Santanchè 2015]. In a nutshell, aspects related to the conceptual level were
investigated in [Bernardo et al. 2013], while [Miranda and Santanchè 2013] studied how to extract
triples as descriptions from different models. Furthermore, [Mota and Medeiros 2013] examinated the
problem of handling a multitude of physical formats, converging to a homogeneous one.

Based on the previous implementations, we developed a unified architecture as a framework on top
of the Neo4j graph database. A framework called 2graph for converting resources to graphs in the
Physical Scale was developed, currently supporting the conversion to graph of CSV, HTML, XML,
XLS, XLSX, N3 RDF and ODS – this set of formats was defined as the most relevant formats for
biologists in the organism-centric domain. The framework defines a specific module to convert each
specialized format to a graph, and was built on top of DDEx [Mota and Medeiros 2013]. It can be
extended by plugging new conversion modules.

The graphs of the Scales and the MTG are stored together within a Neo4j database, but logically
separated by a different set of labels on nodes and edges. Similarly, nodes and edges from different
scales are stored within the same graph but are logically sliced by properties indicating their scales.

The Neo4j database offers a specific graph query language (called Cypher) that supports both
reading (match step) and writing (transform step) clauses. Cypher supports SQL update-like queries,
which enables to combine reading and writing clauses to create new graphs resulting from a matched
input. We are working to automatically map our generic transformation approach described in the
previous section to Cypher queries.

Even though our proposal can be extended to other file formats, we are currently focusing on a set
of formats defined by biologists as the most relevant for their work (discussed in Section 2.1), i.e.,
spreadsheets (XLS, XLSX, ODS), HTML tables, CSV files, XML files and textual documents. We
have developed a graph framework for ETL named 2graph4. This framework is represented as the
“Graph Translator ” element in Fig. 2.

4Available at http://www.lis.ic.unicamp.br/ matheus/projects/2graph
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5.2 Scenario and Experimental Procedure

In Section 2.1, we presented a scenario of an organism-centric data analysis, in which researchers dy-
namically produce profiles of living beings integrating characteristics scattered across several sources.
The dynamical nature of this task and the heterogeneity of formats, models and schemas on the
sources make the progressive incremental integration approach a powerful alternative.

In our investigation, we first collected data corresponding to the biologist’s necessities in the scenario.
We applied the implemented tools in these data analyzing the transformation results in each scale.
We selected relevant examples to illustrate the findings.

Consider Fig. 6 and Fig. 7 with excerpts of files to be integrated: an XLSX spreadsheet and an
XML/NEXUS document, respectively. While the spreadsheet contains morphological traits, behav-
ioral aspects, habitat characteristics etc. of several species, the XML/NEXUS file corresponds to the
serialization of a phylogenetic tree.

Fig. 6. Excerpt of a XLS spreadsheet highlighting the row regarding the species Brachycephalus ephippium

Both resources contain data regarding the same set of organisms under investigation, being relevant
to build organism profiles. While the red box of Fig. 6 highlights a row of the spreadsheet containing
information about the species Brachycephalus ephippium, the red box in Fig. 7 points to an XML
element – labeled as OTU (Operational Taxonomic Unit) – regarding the same species, representing
its node in a phylogenetic tree.

Fig. 7. Excerpt of a XML/NEXUS file highlighting the species Brachycephalus ephippium

5.3 Ingestion: From the original sources to the physical scale

The first step involves ingesting raw data from the input resources, converting them to a graph rep-
resentation – see Fig. 10(A). The purpose of the Physical Scale is to solve a common initial issue in
the data integration pipeline: homogeneous access. The mapping process preserves in the graph as
much original format-related information as possible, without homogenization/standardization con-
cerns. For instance, unlike a text-plain CSV file, proprietary spreadsheet formats have substantial
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extra information, such as, metadata, comments, text formatting, formulas, links, etc. In the cur-
rent implementation, the ingested graphs are stored in a graph database and can be reached by a
graph query language. The ingestion module in the system is conducted by the 2Graph software, as
described in Section 5.1.

Fig. 8. Graph Representation of an XLS file as a graph in the Physical Scale

Fig. 8 and Fig. 9 depict portions of the mapped graphs produced from the spreadsheet and
XML/NEXUS presented in Fig. 6 and Fig. 7, respectively. The root node (green) in Fig. 8 rep-
resents a given XLS spreadsheet. It contains a single sheet, which has several rows (r0 to r2 in blue).
Each row node points to its chain of cell nodes (gray). The box linked to the cell Brachycephali-
dae shows the variety of node properties, representing different aspects of the cell: location, content,
format, etc. Similarly, the root node in Fig. 9 represents the XML resource itself, followed by an
hierarchy representing the XML document. The highlighted red box represents the XML element
OTU, previously presented in figure Fig. 7.

Fig. 9. Graph Representation of an XML/NEXUS file as a graph in the Physical Scale

5.4 From the Physical to the Logical scale

Once the resources are represented as graphs in the Physical Scale, the integration process starts, and
further scales are built on top of it as in a layered architecture. The subsequent Logical scale addresses
the issue of handling a multitude of formats in a homogeneous logical structure. Transformations
between the scales are based on criteria, which comprise a set of match/transform clauses, as detailed
in Section 4.2. Fig. 10(A) to (B) illustrates the transformation from the Physical to the Logical scale.

While several formats organize their data as tables and relationships – e.g., XLS, ODS, CSV and
even an HTML table –, other organize the data as hierarchies – XML and JSON. Thus, it is possible
to induce a common logical representation shared by several physical formats, which aligns or discards
unmatched specificities.
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Fig. 10 illustrates the XLS file in the Physical Scale and its corresponding representation in the
Logical Scale as a table structure. While in the Physical Scale an XLS format is represented as a grid
of cells, with specialized metadata concerning formulas, format etc. and no explicit schema – as usual
in spreadsheets –, at the Logical Scale all Tables must look the same, i.e., as illustrates Fig. 10, the
first row of nodes connected to the Table node is an explicit Schema defined by its attributes.

Fig. 10. All stages presented as a graph-based representation

The main benefit resulting from the effort of homogenizing multiple formats behind the same logi-
cal model is the possibility of reusing algorithms over the same logical structure, independently of its
physical format – e.g., the same algorithm can extract entities from tables coming from spreadsheets,
CSV, relational tables and others. This transformation rise several challenges – e.g., schema recog-
nition is not always trivial. Such challenges, however, are already widely discussed in the literature
(including a previous work developed by us [Bernardo et al. 2013]) and are not subject of attention
in this research.

5.5 From the Logical to the Description scale

The Description Scale aims at decoupling data from different logical structures and converges them to
one single unified logical model. The unified model is based in the triple <resource, property, value>.
It relies on RDF, but it still not a full fledged RDF, since it adopts only the RDF graph model
to reduce all logical models to a single one. But the content of the nodes and edges are still plain
text, lacking fundamental semantic concerns since it does not: distinguish entities, adopt controlled
vocabularies to represent descriptive properties or make explicit the semantics of the elements using
ontologies. These issues are addressed in the Conceptual Scale.

Initiatives found in literature stress different strategies for transforming a table or a hierarchy to
triples, including a previous work developed by us [Bernardo et al. 2013]. This research do not focus
on such problems and adopts a classical "triplification" strategy – as described in [Bernardo et al.
2013]. The transformation approach follows the same rationale of the previous section, to transform
data represented as a Table in the Logical Scale to an RDF-based graph in the Description Scale.
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The criterion applied in this transformation was described in Section 4.2 and illustrated in Fig. 4
(up), showing the match expression on the left and the transform process on the right. Fig. 4 (down)
shows a materialization of the match/transform: each table row (r1 and r2) becomes a described
instance, in which the descriptive attributes (a1, a2 and a3) come from the schema row and their
values (ca, cb and cc) come from the rows content. Fig. 10(B) to (C) illustrates the transformation
applied to our frogs example.

Although biologists still cannot handle data from previous scales in a conceptual and more integrated
fashion, the Description Scale can be helpful to them, as it already allows some preliminary and
meaningful analysis. For instance, spreadsheets regarding morphological traits usually adopts a cross-
sheet way of organization. Such organization hampers an unified view of the traits of an organism,
requiring more efforts from the biologists when conducting any initial analysis.

Fig. 11. Example of visualization of the Description Scale

At this stage of the investigation, LinkedScales enables to integrate XML files containing phyloge-
netic trees (from the TreeBase repository) with spreadsheets and CSV files regarding morphological
traits (maintained by biologists). Based on the homogeneous models produced for the files in the Log-
ical Scales (after being represented as a raw-format in the Physical Scale), species names mentioned
on the tree and species names mentioned on the tables are linked using a simple string match.

Fig. 11 illustrates a visualization of output results corresponding to the initial outcome from the
Description Scale. It shows the species following the phylogenetic tree provided by the XML file
aggregated (colors) according to the tables in which the species are mentioned. Such tree enables
the study of the evolution of traits across the phylogenetic group considered, but also correlates how
closely related taxa are from one-another.

5.6 From the Description to the Conceptual scale

The Conceptual Scale achieves a full fledged RDF representation. The transformation from the De-
scription to the Conceptual Scale involves applying algorithms like entity resolution and interconnec-
tion with ontologies to make explicit the semantics of the entities and properties involved in the de-
scription. Therefore, as illustrates Fig. 10(C) to (D), attributes are unified in the same RDF properties
(e.g., taxon:Species, taxon:Family); entities, like the class Amphibia and the family Brachycephalus,
are unified.
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6. CONCLUSION

In this article, we proposed an original framework named LinkedScales, based on the multiscale in-
tegration approach. Its architecture relies on graphs and systematizes in layers (scales) progressive
integration steps based in graph transformations. LinkedScales is strongly related with the pay-as-
you-go integration, slicing and encapsulating tasks concerned with the integration process in discrete
scales. The approach is thus aligned with the modern perspective of treating several heterogeneous
data sources as parts of the same dataspace, addressing integration issues in progressive steps, trig-
gered on demand.

The designed solution is based on our Multiscale Graph Model, which was instantiated in our
Primary Data Architecture able to be extended to several contexts. The proposal allowed a homoge-
neous perspective of data in each scale, encapsulating details about heterogeneities. In a nutshell, our
approach is founded in three pillars: systematization, reuse and provenance.

The investigated experimental scenario demonstrated the overall potential benefits of LinkedScales
to reach organism profiles. A significant part of the biological research work remains in an organism-
centric perspective, which usually requires combining data regarding distinct aspects of organisms.
However, relevant data is typically scattered among heterogeneous sources with different formats,
structures and schemas, hampering the combination of data across sources to perceive information
meaningfully and to systematically compare organisms. The solution proposed in the LinkedScales
approach revealed its usefullness to the experimented analysis.

Future work involves conducting additional experimental evaluations to thoroughly examine the
quality and scalability of data integration provided by the approach. Furthermore, a full-stack imple-
mentation integrating all the independent solutions in an unified system5 will be developed.
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